Course Number and Name BCE601 - STRUCTURAL ANALYSIS – II

Credits and Contact Hours

Credits and Contact Ho

4 & 60

Course Coordinator's Name

Ms.M .V. Shruthi

Text Books and References

TEXT BOOKS:

1. S.S.Bhavikati. Structural Analysis Vol.-I & II. Vikas Publishing House pvt ltd, 2009

REFERENCES:

- 1. William Weaver, Computer Programs for structural Analysis, VNR Publishers, 2006
- 2. Rubinstein M.F, Matrix Computer Analysis of Structures, Prentice Hall, Englewood cliffs, 1990
- 3. Arya AS. and Jain." Theory and Analysis of Structures", Nem Chand & Bros, Dec 1992
- 4. Pandit G S and Gupta S P,"Matrix methods in structural analysis", Tata McGraw Hill Publishing Company Limited, 2007

Course Description

•	To introduce the students to basic theory and concepts of structural analysis and methods for the
	analysis of structures.

Prerequisites	Co-requisites			
Structural Analysis – I	NIL			

required, elective	, or selected elective	(as p	per Table 5	;-1)

Course Outcomes (COs)												
	CO1	Analyze Space Truss using tension Coefficient method										
	CO2	Analyze cable suspension bridges										
	CO3	Perform plastic analysis of indeterminate beams and frames										
	CO4	Analyze structures by using matrix flexibility and stiffness methods										
	CO5	Implement basic concepts of finite element analysis										
Student Outcomes (SOs) from Criterion 3 covered by this Course												
	COs/SOs	а	b	с	d	e	f	g	h	i	j	k
	CO1			М	Н							
	CO2			М	Н							
	CO3			М	Н							
	CO4			М	Н							
	CO5			М	Н							

List of Topics Covered

UNIT I ILD FOR INDETERMINATE STRUCTURES

Influence line for statically indeterminate structures - Maxwell Betti theorem - Muller - Breslau Principle and its application to determine the influence lines of reactions. SF and BM at a section of continuous beams – qualitative influence lines for horizontal thrust reaction and moments for continuous beams, portal and arches.

UNIT II ARCHES & CABLES

Arches and suspension Cables : Three hinged and two hinged arches-parabolic and circular arches influence lines for three and two hinged arches for horizontal thrust, SF and BM at any section - length of cable, maximum tension - types supports - forces in towers.

UNIT III PLASTIC THEORY

Plastic Theory: Plastic moment of resistance - plastic modulus - shape factor - plastic hinges determination of collapse load for continuous beams and portals.

UNIT V **STIFFNESS METHOD**

Matrix Method of Structural Analysis: Stiffness methods-development of stiffness method -stiffness matrix for continuous beams and portals application to simple pin jointed trusses, continuous beams, portal frames.

UNIT V **FLEXIBILITY METHOD**

Matrix method of Structural Analysis: Flexibility method – statically determinate and indeterminate (up to 2 degrees only) structures- formation of flexibility matrix - simple problems on Continuous beams, Portal frame.

12

12

12

12