Course Number and Name

BCE602 - REINFORCED CONCRETE STRUCTURES – II

Credits and Contact Hours

4 & 60

Course Coordinator's Name

Ms.R.J.Rinu Isah

Text Books and References

TEXT BOOKS:

1. N.Krishnaraju, Design of R.C.Structures, CBS Publishers and Distributors. Delhi, 1989

REFERENCE BOOKS:

- 1. Mac Ginley, T.J. Reinforced Concrete Design, Theory and Examples, E and N.Spon. Umited London, 1978
- 2. Jaikrishna and Jain O.P, Plain and Reinforced Concrete Vol. I & II", Nem Chand & Bros., 1958
- 3. Krishna Raju N, Bridge Engineering" Oxford and IBH Publishing, 2010
- 4. Park R. and Paulay T. Reinforced Concrete Structures John Wiley and Sons, 1975.
- 5. Neville A.M. Properties of Concrete, Pitman Pub., 1981

Course Description

• To give an exposure to the design of continuous beams, slabs, staircases, walls and bridge structures and to introduce yield line theory

	Prerequisites	Co-requisites						
Reinfor	ced Concrete Structures – I	NIL						
	required, elective, or selecte	ed elective (as per Table 5-1)						
Course Outcon	nes (COs)							
CO1	Design counter-fort and cantilever 1	retaining walls						
CO2	Design underground and overhead water tanks							
CO3	Design bridges and flat slab							
CO4	Different methods and systems – ur	niform and non-uniform pre-stressing design						
CO5	Design Slab using yield line theory							

Student Outcomes (SOs) from Criterion 3 covered by this Course

COs/SOs	a	b	с	d	e	f	g	h	i	j	k	
CO1			Н	М								
CO2			Н	М								
CO3			Н	М								
CO4			Н	М								
CO5			Н	М								

List of Topics Covered

UNIT I RETAINING WALLS

Retaining Walls – Design of cantilever and counter fort types using working stress method.

UNIT II WATER TANKS

Water Tanks – Underground rectangular tanks – Domes – overhead circular and rectangular tanks – Design of staging and foundations.

UNIT III BRIDGES

Bridges – slab Bridge – Distribution of concentrated loads by effective width and Pigeaud's method. Load distribution in interconnected girders by Courbon's method – T – Beam Bridge.

UNIT IV PRE STRESSED CONCRETE

Principles of Pre-stressing – Materials for pre-stressed Concrete – Different methods and systems – uniform and non-uniform pre-stressing – losses in pre-stress – Analysis of simply supported beams with straight and parabolic tendons.

UNIT V YIELD LINE THEORY

Yield Line Theory: Application of virtual work method to square, rectangular, and Triangular slabs.

11

12

13

13

11