Course Number and Name

BCE702 - COMPUTER AIDED DESIGN OF STRUCTURES

Credits and Contact Hours

4 & 60

Course Coordinator's Name

Mr.K.Sathishkumar

Text Books and References

TEXT BOOKS:

1. Krishna Raju, "Structural Design & Drawing (Concrete & Steel)", CBS Publishers 2004.

REFERENCES:

- 1. Punmia, B.C., Ashok Kumar Jain, Arun Kumar Jain, "Design of steel structures", Lakshmi Publications Pvt. Ltd 2003.
- 2. Rajasekaran, S., Finite Element Analysis. AH Wheelers Publishing Company Ltd.,
- 3. Rao S.S.Optimization Theory and Application, Wiley Eastern Ltd.
- 4. Auto CADD manual.

Course Description

• To introduce the students about computer gra and expert systems, applications in analysis.	aphics, structural analysis, design and optimization
Prerequisites	Co-requisites
Computer Aided Building Drawing	NIL

omputer Aided Building Drawing	NIL
required elective or selected	d elective (as per Table 5-1)

Course Outcomes (COs)						
CO1	Prepare wire frame modeling and solid modeling using drafting packages					
CO2	Perform structural analysis using computer packages					
CO3	Prepare algorithms for the analysis and design of steel and RC structures					
CO4	Analysis simple structures using expert systems					
CO5	Analysis and design of structures by using STADD.PRO, STRAP					

Student Outcomes (SOs) from Criterion 3 covered by this Course

Student Outcomes (SOS) nom enterior 5 covered by this course													
	COs/SOs	a	b	с	d	e	f	g	h	i	j	k	
	CO1	Н		Н	Н	Н							
	CO2			Н	Н	Н							
	CO3			Н	Н						М		
	CO4			Н	Н	Н		L					
	CO5			Н	Н	Н							
List of Topics Covered													

UNIT I INTRODUCTION & COMPUTER GRAPHICS

Introduction to computer graphics - Fundamentals of CAD – Hardware and software requirements – Design process – Applications and benefits – drafting packages- use of AUTOCAD – application to layout of buildings and structures - graphic primitives – wireframe modeling and solid modeling.

UNIT II DESIGN & OPTIMIZATION

Design and Optimization: Optimization techniques – principles of design of steel and RCC structures - applications to simple design problems.

UNIT III INTRODUCTION TO FINITE ELEMENT ANALYSIS

Introduction of Finite Element Analysis: Fundamentals of finite element analysis – steps involved - boundary value problems. Galerkin's approach – variation principles – finite element matrix - assemblage solution for deflections - stresses and strains - simple problems using triangular elements.

UNIT IV ANALYSIS OF STRUCTURES BY FINITE ELEMENT METHOD 12

Analysis of Structures by FEM: Analysis of plane truss, space truss, plane frame and space frame by using FEM packages – ANSYS – STRUDL – NASTRAN – SAP 2000.

UNIT V STRUCTURAL ENGINEERING PACKAGES

Structural Engineering Packages: Introduction of various structural engineering packages -analysis and design of structures by using STADD.PRO, STRAP.

12

14

12