Course Number and Name

BMA201 - MATHEMATICS – II

Credits and Contact Hours

3 & 60

Course Coordinator's Name

Ms.Kavitha

Text Books and References

TEXT BOOK:

- 1. R.M.Kannan and B.Vijayakumar" Engineering Mathematics–II "2ndEdition, SRB Publicat Chennai 2007.
- 2. Bali.N.P and Manish Goyal, "Engineering Mathematics", 3rdEdition, Laxmi Publications (P) Lltd, 2008

3. Grewal .B/S "Higher Engineering Mathematics", 40thEditon, Khanna Publications, Delhi, 2007

REFERENCES:

- 1. Ramana.B.V, "Higher Engineering Mathematic", Tata McGraw Hill Publishing Company, New D 2007.
- 2. Gupta SC, and VK.Kapoor, "Fundamentals Mathematical Statistics", 11thedition, Sultan Chand Sons, I Delhi, 2014.

Course Description	
Ability to apply these principles of mathematics in projects and research work	s

y to apply these principles of mathematics in projects and research works.								
Prerequisites	Co-requisites							
Mathematics I	NIL							
required, elective, or selected	elective (as per Table 5-1)							

Cour	rse Outc	omes	s (COs)											
C01		Student shall be able to Solve differential equations, simultaneous linear equations, and some special types of linear equations related to engineering.												
		spec	cial type	es of lin	ear equa	tions rel	lated to	engineer	ring.					
CO2	,	Relate the use of mathematics in applications of various fields namely fluid flow, heat flow,												
	solid mechanics, electrostatics, etc.													
CO3		Abi	lity to t	est hypo	othesis									
CO4		Fine	1 intens	ity of de	egree of	relation	ship bet	ween tw	o varial	oles and	also bri	ng out i	regression	1
		equa	ations.											
CO5		Understand to solve matrix problems related to real life problems.												
CO6		Formulate mathematical models												
Stud	ent Out	come	s (SOs)	from C	riterion	3 covere	ed by th	is Cours	e					
	COs/S	Os	a	b	с	d	e	f	g	h	i	j	k	
	COI	L	Η		L									
-	CO2	2		Н				Н		L	L		М	
	CO3	3		Н				Н		L	L		М	
-	CO4	ł					М						М	

	CO5								М	М	
	CO6								М		
List	of Topics (Covered									l
UNI	TI OI	RDINAI	RY DIF	FEREN	NTIAL]	EQUAI	TION			12	2

UNIT II VECTOR CALCULUS

Gradient, divergence and curl –Directional derivatives –Irrotational and solenoidal vector fields – vector integration– Green's theorem in a plane, Gauss divergence theorem and Stoke's theorem (without proofs) – simple applications involving cubes and rectangular parallelepipeds.

UNIT III ANALYTIC FUNCTIONS

Functions of a complex variable – Analytic functions – Necessary conditions, Cauchy-Riemann equation and sufficient conditions (without proofs) – Harmonic and orthogonal properties of analytic functions – Harmonic conjugate – construction of analytic functions – conformal mapping: W=Z+C, CZ, 1/Z and bilinear transformation.

UNIT IV COMPLEX INTEGRATION

Complex integration – Statement and application of Cauchy's integral theorem and Cauchy's integral formula –Taylor and Laurent expansions – Singular points – Residues – Residue theorem –Application of Residue theorem to evaluate real integrals – Unit circle and semi-circular contour (excluding poles on boundaries).

UNIT V STATISTICS

Mean, Median, Mode – Moments –Skewness and Kurtosis – Correlation – Rank Correlation – Regression – Chi square test for contingency tables.

12

12

12

12