Academic Course Description

BHARATH UNIVERSITY

Faculty of Engineering and Technology Department of Civil Engineering

BME103 - BASIC MECHANICAL ENGINEERING

Course (catalog) description

The program educational objectives (PEOs) for the mechanical-engineering program are to educate graduates who will be ethical, productive, and contributing members of society.

The broad education necessary to understand the impact of engineering solutions in a global, economic, environmental, and societal context.

The ability to apply principles of engineering, basic science, and mathematics to design and realize physical systems, components, or processes

Compulsory/Elective course : Compulsory

Credit & Contact hours : 3 & 30hour Course Coordinator : **Mr.Karthick**

Instructors:

Name of the	Class	Office	Office	Email (domain:@	Consultation
instructor	handling	location	phone	bharathuniv.ac.in	
Mr.Karthick	First year Civil			.mech:@ bharathuniv.ac.in	9.00-9.50AM

Relationship to other courses

Pre –requisites : Basic mechanical

Assumed knowledge: By understanding about mechanical knowledge in various fields

Following courses : Mechanical Engineering

Syllabus Contents

UNIT I ENERGY RESOURCES AND POWER GENERATION

6

Renewable and Non-renewable resources- solar, wind, geothermal, steam, nuclear and hide power plants Layout, major components and working. Importance of Energy storage, Environmental constraints of power generation using fossil fuels and nuclear energy.

UNIT II IC ENGINES 6

Classification, working principles of petrol and diesel engines- two stroke and four stroke cycles, functions of main components of I.C engine. Alternate fuels and emission control.

UNIT III REFRIGERATION AND AIR-CONDITIONINGSYSTEM

6

Terminology of Refrigeration and Air-Conditioning, Principle of Vapor Compression & Absorption system- Layout of typical domestic refrigerator- window & Split type room air conditioner.

UNIT IV MANUFACTURING PROCESSES

6

description of Mould makes and casting process, Metal forming, Classification types of forging, forging operations, Brief description of extrusion, rolling, sheet forging, and drawing. Brief description of welding, brazing and soldering. Principal metal cutting processes and cutting tools, Brief description of Centre lathe and radial drilling machine.

UNIT V MECHANICAL DESIGN

6

Mechanical properties of material-Yield strength, ultimate strength, endurance limit etc., Stress-Strain curves of materials. Stresses induced in simple elements. Factor of safety - Design of Shafts and belts. Types of bearings and its applications. Introduction to CAD/CAM/CIM & Mechatronics

Total: 30 hr

TEXTBOOKS: 1. T.J. Prabhuetal, "Basic Mechanical Engineering", SciTech Publications(p)Ltd,2000

REFERENCES: 1. NAGPAL, G.R, "PowerplantEngineering", KhannaPublishers, 2004.

- 2. RAO.P.N, "Manufacturing Technology", TataMcGraw-HillEducation, 2000.
- 3. Kalpakjian, "ManufacturingEngineeringandTechnology", AdissoWesleypublishers, 1995.
- 4. Ganesan.V, "Internal combustion engines", TataMcGraw-HillEducation, 2000.
- 5. C.P.Arora, "Refrigeration and Air Conditioning", TataMcGraw-HillEducation, 2001.
- 6. V.B.Bhandari, "Design of Machine elements", Tata McGraw-HillEducation, 2010.

Computer usage: Animation Videos

Professional component

General 0% **Basic Sciences** 0% Engineering sciences & Technical arts 100% Professional subject 0%

Broad area: Mechanical

Test Schedule

S. No.	Test	Tentative Date	Portions	Duration
1	Cycle Test-1	August 1 st week	Session 1 to 10	2 Periods
2	Cycle Test-2	September 2 nd week	Session 11 to 20	2 Periods
3	Model Test	October 2 nd week	Session 1 to 30	3 Hrs
4	University		All sessions / Units	3 Hrs.
'	Examination			

Mapping of Instructional Objectives with Program Outcome

Familiarize the students with the Basics and fundamental concepts of Engineering and to		Correlates to		
highlight the approaches in organization behavior		program o	program outcome	
	Н	M	L	
An ability to apply knowledge of mathematics	d	a,b,c,e,g	j,k	
An ability to apply knowledge of science, and engineering	a,d,e	b,c,g	j,k	
Ability to design and conduct experiments, as well as to analyze and interpret data.	a,d,e	b,c,g	j,k	
4. An ability to function on multi-disciplinary teams	a,d	b,c,g	j,k	
5. To provide basic Knowledge of basic manufacturing process.	a,d	b,c,g	j,k	
6. Ability to identify, formulate, and solve engineering problems	a,d	b,g	j,k	

H: high correlation, M: medium correlation, L: low correlation

Draft Lecture Schedule

Session	Topics	Problem Solving (Yes/No)	Text / Chapter	
	UNIT I ENERGY RESOURCES AND POWER GENERATION			
1.	Renewable and Non-renewable resources- solar power plants Layout	No		
2.	Wind, geothermal, steam power plants Layout	No	Unit I	
3.	Nuclear and hide power plants Layout	No	T1/R1	
4.	Major components and working of Power plant	No		
5.	Environmental constraints of power generation using fossil fuels	No		
6.	Nuclear energy.	No		
	UNIT II IC ENGINES			
7.	Classification of I.C Engines	No		
8.	Working principles of Petrol Engines	No	Unit II	
9.	Working principles of Diesel Engines	No	T1/R4	
10.	Two stroke and four stroke cycles	No	11/104	
11.	Functions of main components of I.C engine	No	1	
12.	Alternate fuels and emission control	No	1	
	UNIT III REFRIGERATION AND AIR-CONDITIONINGSYSTEM	1		
13.	Terminology of Refrigeration and Air-Conditioning	No		

14.	Principle of Vapor Compression Refrigeration system	No		
15.	Principle of Vapor Absorption Refrigeration system	No	Unit III	
16.	Layout of typical domestic refrigerator	No	T1/R5	
17.	Layout of window type room air conditioner	No		
18.	Layout of Split type room air conditioner	No		
	UNIT IV MANUFACTURING PROCESSES			
19.	description of Mould makes and casting process	No		
20.	Metal forming, Classification types of forging, forging operations	No	TT 14 TTT	
21.	Brief description of extrusion, rolling, sheet forging, and drawing	No	Unit III T1/R5	
22.	Brief description of welding, brazing and soldering	No	11/K3	
23.	Principal metal cutting processes and cutting tools	No		
24.	Brief description of Centre lathe and radial drilling machine.	No		
	UNIT V MECHANICAL DESIGN			
	Mechanical properties of material-Yield strength, ultimate strength, endurance	No		
25.	limit etc	NO	Unit III	
26.	Stress-Strain curves of materials	No	T1/R5	
27.	Stresses induced in simple elements, Factor of safety	No		
28.	Design of Shafts and belts	Yes		
29	Types of bearings and its applications	No		
30.	Introduction to CAD/CAM/CIM & Mechatronics			

Teaching Strategies

The teaching in this course aims at establishing a good fundamental understanding of the areas covered using:

- Formal face-to-face lectures
- Tutorials, which allow for exercises in problem solving and allow time for students to resolve problems in understanding of lecture material.
- Laboratory sessions, which support the formal lecture material and also provide the student with practical construction, measurement and debugging skills.
- Small periodic quizzes, to enable you to assess your understanding of the concepts.

Evaluation Strategies

 Cycle Test – I
 5%

 Cycle Test – II
 5%

 Model Test
 5%

 Assignment
 5%

 Attendance
 10%

 Final exam
 70%

Prepared by Mr.S.THIRUPPATHIRAJA

Dated:

Addendum

ABET Outcomes expected of graduates of B.Tech / Civil / program by the time that they graduate:

- a) The ability to apply knowledge of mathematics, science, and engineering fundamentals.
- b) The ability to identify, formulate and solve engineering problems.
- c) The ability to design a system, component, or process to meet the desired needs within realistic constraints such as economic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability.
- d) The ability to design and conduct experiments, as well as to analyze and interpret data
- e) The ability to use the techniques, skills, and modern engineering tools necessary for engineering practice.
- f) The ability to apply reasoning informed by the knowledge of contemporary issues.
- g) The ability to broaden the education necessary to understand the impact of engineering solutions in a global, economic, environmental, and societal context.
- h) The ability to understand professional and ethical responsibility and apply them in engineering practices.
- i) The ability to function on multidisciplinary teams.
- j) The ability to communicate effectively with the engineering community and with society at large.
- k) The ability in understanding of the engineering and management principles and apply them in project and finance management as a leader and a member in a team.
- I) The ability to recognize the need for, and an ability to engage in life-long learning.

Program Educational Objectives

PEO1: PREPARATION

Civil Engineering graduates will have knowledge to apply the fundamental principles for a successful profession and/or for higher education in Civil Engineering based on mathematical, scientific and engineering principles, to solve realistic and field problems that arise in engineering and non engineering sectors

PEO2: CORE COMPETENCE

Civil Engineering graduates will adapt to the modern engineering tools and construction methods for planning, design, execution and maintenance of works with sustainable development in their profession.

PEO3: PROFESSIONALISM

Civil Engineering Graduates will exhibit professionalism, ethical attitude, communication and managerial skills, successful team work in various private and government organizations both at the national and international level in their profession and adapt to current trends with lifelong learning.

PEO4: SKILL

Civil Engineering graduates will be trained for developing soft skills such as proficiency in many languages, technical communication, verbal, logical, analytical, comprehension, team building, inter personal relationship, group discussion and leadership skill to become a better professional.

PEO5: ETHICS

			ake decisions that are safe and
environmentally-responsible	e and also innovative for societa	i improvement.	
		DME402 DAGECAM	COMANICAL ENGINEERING
		BME103 - BASIC MI	ECHANICAL ENGINEERING
	Course Teacher	Signature	

Course Teacher	Signature
Mr.S.THIRUPPATHIRAJA	

Course Coordinator HOD/Civil