CURRICULUM AND SYLLABUS (R2015) CHOICE BASED CREDIT SYSTEM

M.TECH MEDICAL NANOTECHNOLODY FULL TIME I TO IV SEMESTERS

SEMESTER I

SL. NO	Category	COURSE CODE	COURSE TITLE	L	Т	P	C
			THEORY				
1	PC	MN8101	Biomedical Sensors and Instrumentation	3	0	0	3
2	PC	MN8102	Diagnostic and Therapeutic Equipments	3	0	0	3
3	PC	MN8103	Medical Imaging Systems	3	0	0	3
4	PC	MA8163	Attlemocett Apppliect Mathematics	3	31	0	0
5	PC	MD8152	Anatomy and Physiology	3	0	0	3
6	PE		Professional Elective I	3	0	0	3
			PRACTICAL				
7	PC	MN8111	Clinical Instrumentation Laboratory	0	0	4	2
			TOTAL	18	1	4	21

SEMESTER II

SL. NO	Category	COURSE CODE	COURSE TITLE	L	Т	P	С
1	PC	MN8252	Bio Mechanics	3	0	0	3
2	PC	MN 8253	Rehabilitation Engineering	3	0	0	3
3	PE		Professional Elective II	3	0	0	3
4	PE		Professional Elective III	3	0	0	3
5	PE		Professional Elective IV	3	0	0	3
6	PE		Professional Elective V	3	0	0	3
7	PC	MN8211	Hospital Information System Laboratory	0	0	4	2
			TOTAL	18	0	4	20

4

SEMESTER III

SL. NO	Category	COURSE CODE	COURSE TITLE	L	T	P	С
	THEORY						
1	PE		Professional Elective VI	3	0	0	3
2	PE		Professional ElectiveVII	3	0	0	3
3	OE		Open ElectiveVIII	3	0	0	3
			PRACTICAL				
4	PR	MN8311	MN8311 Project Work (phase I) Summer Training Pre-requisite		0	12	6
			TOTAL	9	0	12	15

SEMESTER IV

SL. NO	Category	COURSE CODE	COURSE TITLE	L	Т	P	C
			PRACTICAL				
1	PR	MN8411	Project Work (phase II)	0	0	24	12
			TOTAL	0	0	24	12

OVERALL CREDITS : 68

SUMMARY OF CURRICULUM STRUCTURE AND CREDIT & CONTACT HOUR DISTRIBUTION

S.No	Sub Area		Credit As	No. of	% of		
•						Credit	credit
		Ι	II	III	IV		
1	Professional Core (PC)	18	8	-	-	26	38.23
2	Professional Elective (PE)	3	12	3		18	26.47
3	Open Electives (OE)	-	-	3	-	3	4.37
4	Project Work, Seminar, Internship, Term Paper, etc. (PR)	-	-	6	12	19	27.53
	Total Credit	21	20	15	12	68	100%
	Total Contact Hour	28	26	21	24	99	

LIST OF ELECTIVES

SUB.CODE	SUBJECT NAME	L	T	P	C						
PROFESSION	AL ELECTIVE (PE) - I	I									
MN8001	Bio Statistics	3	0	0	3						
MN8002	Finance Management in Hospital	3	0	0	3						
MN8003	Finite Element Analysis For Biomedical Engineering	3	0	0	3						
PROFESSION	AL ELECTIVE (PE) –II										
MN8004	Health Informatics	3	0	0	3						
MN8005	Health Policy and Equipment Management	3	0	0	3						
MN8006	Hospital Architecture	3	0	0	3						
PROFESSION	AL ELECTIVE (PE) - III										
MN8007	Hospital Planning, Organization and	3	0	0	3						
MN8008	Hospital Waste Management	3	0	0	3						
MN8009	Human Resource Management in Hospital	3	0	0	3						
PROFESSIONAL ELECTIVE (PE) - IV											
MN8010	Physics in Medicine	3	0	0	3						
MN8011	Quality Assurance and Safety in Hospitals	3	0	0	3						
MN8012	Signal Processing and Image processing	3	0	0	3						
PROFESSION	AL ELECTIVE (PE) – V										
MN8071	Bio Materials	3	0	0	3						
MD8071	Advanced Neural Computing	3	0	0	3						
MD8072	Advanced Neural Engineering	3	0	0	3						
PROFESSION	AL ELECTIVE (PE) – VI										
MD8073	Bio MEMS	3	0	0	3						
MD8074	Computer Based Medical Instrumentation	3	0	0	3						
MD8075	Medical Ethics and Standards	3	0	0	3						
PROFESSION	AL ELECTIVE (PE) – VII										
MD8076	Medical Optics	3	0	0	3						
MD8077	Nanomedicine Principles and Applications	3	0	0	3						
MD8078	Pattern Recognition Techniques and Applications	3	0	0	3						

SUB.CODE	SUBJECT NAME	L	T	P	C
OPEN ELECT	TIVE(OE) –I		•	•	
MD8079	Physiological Modeling	3	0	0	3
MD8080	Principles of Genetic Analysis	3	0	0	3
MD8081	Tele Health Technology	3	0	0	3

MN8101	BIOMEDICAL SENSORS AND INSTRUMENTATION	L	T	P	C
	Total Contact Hours: 45	3	0	0	3
	Prerequisite: Basic BioSensor (B.Tech)			1	
	Course Designed by : Bio-Medical Engineering				

- To study the basic characteristics of measurement system.
- To study the different types of transducers, electrodes and signal conditioning circuits.
- To study the techniques used for measurement of various non electrical physiological parameters.
- To know the different types of display and recording devices.

C	OURS	E OU	TCOM	IES (C	Os)									
C	D1	Stude	nts wil	l get the	e clear	domai	n knov	vledge	about v	arious	measure	ement sy	stems.	
C)2	Stude	nts wil	ll be al	ole to	develo	p mea	sureme	nt syst	ems b	y selecti	ing diffe	rent types of	
		senso	rs, ele	ctrodes	, signa	al cond	litionii	ng circ	uits fo	or acqu	niring a	nd recor	ding various	
		physic	physiological parameters.											
	Mapping of Course Outcomes with Program outcomes (POs) (H/M/L indicates strength of correlation) H-High, M-Medium, L-Low													
			Programme Outcomes (POs)											
1	COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
	CO1	Н	M	Н			Н			M				
2	CO2					M							L	
3	3 Category Professional Mathematics (PM)					ofession ore (PC	C)	Professional Elective (PE)		Open Elective (OE)		Project/ Term Paper Seminar/ Internship (PR)		
4	4 Approval 41st - 42nd Meetings of Academic Council													

UNIT I TRANSDUCERS

9

Characteristics- Static, Dynamic, Errors in the measurements, Classification of transducers - Resistive, Capacitive, Inductive, Photoelectric, piezoelectric and mechanoelectronics.

UNIT II ELECTRODES & AMPLIFIERS

9

Half cell potential, Reference electrodes, polarization effects, Polarisable and nonpolarisable electrodes, Micro electrodes, Equivalent Circuits, Signal Conditioning circuits-Characteristics of Amplifiers, Differential Amplifiers, Filters, Bridge circuits, A/D Converters.

UNIT III CHEMICAL AND OPTICAL TRANSDUCERS

9

PH, PO2, PCO2, HCO3 electrodes, Ion sensor, Anion and Cation sensor, Liquid and solid ion exchange membrane electrode, Enzyme electrode, Principle of fiber optic cable, fiber optic sensors, Photo acoustic sensors, PPG sensors.

UNIT IV NON ELECTRICAL PARAMETERS MEASUREMENTS

9

Measurements of Respiration Rate, Temperature, Pulse rate, Blood pressure Measurements-

Direct, Indirect, Blood flow Measurements – Invitro, Invivo, Gas flow measurements.

UNIT V RECORDERS AND DISPLAY

9

Types of recorders, Ink jet, heated stylus, Photographic recorder, Multicolor dot scanners, CRO, storage type, long persistence, digital scope, magnetic tape recorders.

TOTAL: 45 PERIODS

- 1. Rangan C.S., Sarma G.R., and Mani V.S.V., Instrumentation devices and system, Tata McGraw hill Publishing Company limited, New Delhi, 1983.
- 2. John G.Webster, Medical Instrumentation, Application and Design, Third Edition, John willey and sons,1999.
- 3. Jacob Kline., Handbook of Bio Medical Engineering, Academic press Inc., Sandiego, 1988.
- 4. J.B.Gupta, A course in electronic and electrical measurement and instrumentation, S.K.Kataria& Sons, 1999.
- 5. Tatsuo Togawa, Toshiyo Tamura, P.Ake Oberg, Biomedical Transducers and Instruments, CRC Press, New York, 1997.
- 6. Joseph J.Carr and John M Brown, Introduction To Biomedical Equipment Technology, 4/E, pearson education India. 2001.

MN8102	DIAGNOSTIC AND THERAPEUTIC	L	T	P	C
	EQUIPMENTS				
	Total Contact Hours: 45	3	0	0	3
	Prerequisite: Biomedical Instrumention				
	Course Designed by : Bio-Medical Engineering				

- To know the various biopotential recordings so as to enable students to record various biosignals.
- To know the various functional blocks present is cardiac care units so that the students can handle these equipments with care and safety.
- To develop an understanding of the physiotherapy and diathermy equipment so that the student can learn to operate.

COURSE OUTCOMES (COs)															
CC						systen	ıs by	selecti	ng dif	ferent	types	of, elec	trodes	signal	
			-			•	•	record	_		• •		inoues,	5151141	
CC)2											importa	nt work	ing	
			chanisn	-	-	-						1		8	
CC)3					edge al	out va	rious ty	pes of	Medica	al stimu	ılators, a	nd recer	ntly	
CC	M		developed equipments Develop measurement systems by selecting different types of, electrodes, signal												
	7		conditioning circuits for acquiring and recording various biopotential.												
CC															
CO5 Describe and explain specific parts in Cardiac care units. Describe important working mechanisms of assist devices.															
Mapping of Course Outcomes with Program outcomes (POs)															
(H/M/L indicates strength of correlation) H-High, M-Medium, L-Low															
1			(==,=,=,					ramme		_					
	CO	Os					- 8								
2			PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
	CO		M	L	Н	L	M	M	M	M					
	CO	_	M	L	Н	L	M	M	M	M					
	CO		M	L	Н	L	M	M	M	M					
	CO		M	L	Н	L	M	M	M	M					
	CO		M	L	Н	L	M	M	M	M			L	,	
3	Cate	gory		ofessio		Profes			ssional	-	n Elect		Projec	II.	
	Mathe				Core	(PC)	Electi	ve (PE))	(OE)		Term Pa Semina			
				(PM)								In	sennin ternship		
						2						111	СПЗПР	(110)	
4	Appı	OV2	1 /11	st - 12n	d Mee	tings o	f Acad	l emic C	ouncil						
7	zhhi	ova	718	ot - +∠II	iu ivice	angs 0	i Acau	cinc C	ouncii						

UNIT I BIO POTENTIAL RECORDING 9

ECG, EEG, EMG, PCG, EOG, lead system and recording methods, typical waveform, frequency spectrum, abnormal waveforms. Evoked response.

UNIT II CARDIAC CARE UNITS 9

Pace makers - different types, batteries for pace makers.DC defibrillators, asynchronous and synchronous types, patient monitoring system, principles of bio telemetry.

UNIT III DIATHERMY AND STIMULATOR

9

Physiological effects of HF radiation, Depth of Penetration, short wave, Ultrasonic and microwave diathermy, Surgical diathermy, Galvani, Faradic stimulators, Interferential therapy, Electrical safety-Leakage current, Micro and macro electric shock, GFI units, Earthing Scheme, Electrical safety Analyser

UNIT IV ASSIST DEVICES

9

Heart lung machine-Condition to be satisfied by the H/L System. Different types of Oxygenators, Pumps, Pulsatile and Continuous Types, Monitoring Process. Hemodialyser-Indication and Principle of Hemodialysis, Membrane, Dialyasate, Different types of hemodialysers, Monitoring Systems, Wearable Artificial Kidney, Implanting Type. Respiratory aids- Intermittent positive pressure, Breathing Apparatus Operating Sequence, Electronic IPPB unit with monitoring for all respiratory parameters.

UNIT V RECENT TRENDS

9

Principles and application of thermography, Detection circuits, Principles of cryogenic Technique and application, principles of Fiber optics cables, Endoscopy, Laparoscopy, principles of Lithotripsy.

TOTAL: 45 PERIODS

- 1. Albert M Cook and Webster J G Therapeutic medical devices Prentice Hall Nee York 1982
- 2. Heinz Kresse Handbook of Electro medicine. John Wiely& Sons Chrchester 1985
- 3. Webster J.G Medical Instrumentation application and design John Wiley and sons New York 3rd edition 1999
- 4. Jacobson B and Webster J G Medical and Clinical Engineering Prentice Hall of India New Delhi 1999
- 5. Leslie Cromwell , Fred J.Weibell and Erich A.Pfeiffer Biomedical Instrumentation Prentice Hall New Delhi 2000
- 6. Joseph J Carr and John M Brown Introduction to Biomedical equipment Technology Pearson Education 4th edition New Delhi 2001.
- 7. Khandpur R.S Hand Book of Biomedical Instrumentation Tata McGraw Hill publication, New Delhi 2nd edition 2003
- 8. John Denis Enderle, Joseph D. Bronzino, Susan M. Blanchard, 'Introduction to Biomedical Engineering:'Academic Press, 2005, 2nd Edition ISBN 0122386620, 9780122386626

M	N810	3		M	EDICA	L IM	AGIN(G SYST	EMS		L	T	P	C
			Total	Contac	t Hour	s: 45					3	0	0	3
			Prere	quisite:	Basic	Digital	Image	Proces	sing (B	.Tech/l	3.E)			
			Cours	se Desi	gned by	y : Bio-	Medic	al Engi	neering					
O	BJEC	TIVES	S											
			• To sec	study	the sp	ecial i	maging	_	iques u	ised fo	niques. r visual tissues u	_		
C	OUR	SE OU	TCOM	IES (C	Os)									
CO	CO1 Students will get the clear domain knowledge about the various Medical Imaging techniques. Students will be able to understand the various diagnostic applications of the medical													
CO	O2		ng tech	niques	•				_			s of the	med	ical
		(H		_				_			s (POs) lium, L-l	Low		
	~		L .	L		Prog	ramme	Outco	mes (Po	os)	ı	ı	1	
1	Cos	PO1	PO2	PO3	PO4	PO5	PO6		PO8	PO9	PO10	PO11	PO	12
	CO1	Н		3.6	M	Н		M			M		N	Л
3	CO2 Cate	gory	Math	essional ematic PM)		rofessio Core (P		Professional Open Ele Elective (OE)			Terr Se Int	Project/ erm Paper Seminar/ nternship (PR)		
4														

UNIT I PRINCIPLES OF RADIOGRAPHIC EQUIPMENT

8

X-Ray tubes, cooling systems, removal of scatters, Fluoroscopy- construction of image Intensifier tubes, angiographic setup, mammography, digital radiology, DSA.

UNITII COMPUTED TOMOGRAPHY

10

Need for sectional images, Principles of sectional scanning, CT detectors, Methods of reconstruction, Iterative, Back projection, convolution and Back-Projection. Artifacts, Principle of 3D imaging

UNIT III RADIO ISOTOPIC IMAGING

9

Alpha, Beta and Gamma radiation, Radiation detectors, Radio isotopic imaging equipments, Radio nuclides for imaging, Gamma ray camera, scanners, Positron Emission tomography, SPECT,PET/CT.

UNIT IV ULTRASONIC SYSTEMS

9

Wave propagation and interaction in Biological tissues, Acoustic radiation fields, continuous and pulsed excitation, Transducers and imaging systems, Scanning methods, Imaging Modes, Principles and theory of image generation.

NMR, Principles of MRI, Relaxation processes and their measurements, Pulse sequencing and MR image acquisition, MRI Instrumentation, Functional MRI.

TOTAL: 45 PERIODS

- 1. D.N.Chesney and M.O.Chesney Radio graphic imaging, CBS Publications, New Delhi, 1987.
- 2. Peggy, W., Roger D.Ferimarch, MRI for Technologists, McGraw Hill, New York, 1995.
- 3. Steve Webb, The Physics of Medical Imaging, Taylor & Francis, New York.1988.
- 4. Donald W.McRobbice, Elizabeth A.Moore, Martin J.Grave and Martin R.Prince MRI from picture to proton, Cambridge University press, New York 2006.
- 5. Jerry L.Prince and JnathanM.Links," Medical Imaging Signals and Systems"-Pearson Education Inc. 2006

MA8163	ADVANCED APPLIED MATHEMATICS	L	T	P	C
	Total Contact Hours: 60	3	1	0	4
	Prerequisite: Basic Knowledge in Mathematics				
	Course Designed by : Bio-Medical Engineering				

- To encourage students to develop a working knowledge of the central ideas of linear algebra;
- To study and understand the concepts of probability and random variable of the various functions;
- understand the notion of a Markov chain, and how simple ideas of conditional probability and matrices can be used to give a thorough and effective account of discrete-time Markov chains;
- To formulate and construct a mathematical model for a linear programming problem in real life situation:
- Introduce the Fourier Transform as an extension of Fourier techniques on periodic functions and to solve partial differential equations;

COURSE OUTCOMES (COs) CO₁ On successful completion of this course, all students will have developed knowledge and understanding in the fields of linear algebra, probability, stochastic process, linear programming problem and fourier transform. Mapping of Course Outcomes with Program outcomes (POs) (H/M/L indicates strength of correlation) H-High, M-Medium, L-Low Programme Outcomes (Pos) COs PO1 PO2 PO4 PO5 | PO6 | PO7 | PO8 | PO9 PO3 PO10 PO11 PO12 CO1 H M Η M M M Open Elective Professional Professional Professional Project/ Category Mathematics Core (PC) Elective (OE) Term (PM) (PE) Paper Seminar/ Internship (PR) Approval 41st - 42nd Meetings of Academic Council

UNIT I LINEAR ALGEBRA 9+3

Vector spaces – norms – Inner Products – Eigen values using QR transformations – QR factorization - generalized eigenvectors – Canonical forms – singular value decomposition and applications - pseudo inverse – least square approximations --Toeplitz matrices and some applications.

UNIT II ONE DIMENSIONAL RANDOM VARIABLES 9+3

Random variables - Probability function – moments – moment generating functions and their properties – Binomial, Poisson, Geometric, Uniform, Exponential, Gamma and Normal distributions – Function of a Random Variable.

UNIT III RANDOM PROCESSES

9+3

Classification – Auto correlation - Cross correlation - Stationary random process – Markov process – Markov chain - Poisson process – Gaussian process.

UNIT IV LINEAR PROGRAMMING

9+3

9+3

 $Formulation-Graphical\ solution-Simplex\ method-Two\ phase\ method-Transportation\ and\ Assignment\ Models$

UNIT V FOURIER TRANSFORM FOR PARTIAL DIFFERENTIAL EOUATIONS

Fourier transforms: Definitions, properties-Transform of elementary functions, Dirac Delta functions – Convolution theorem – Parseval's identity – Solutions to partial differential equations: Heat equations, Wave equations, Laplace and Poison's equations.

TOTAL: 45+15=60 PERIODS

TEXT BOOKS:

- 1. Bronson, R.Matrix Operation, Schaum's outline series, McGrawHill, Newyork (1989).
- 2. Oliver C. Ibe, "Fundamentals of Applied Probability and Random Processes, Academic Press, (An imprint of Elsevier), 2010.
- 3. Taha H.A. "Operations Research: An introduction" Ninth Edition, Pearson Education, Asia, New Delhi 2012.
- 4. SankaraRao, K. "Introduction to partial differential equations" Prentice Hall of India, pvt, Ltd, New Delhi, 1997.

REFERENCES:

- 1. Andrews, L.C. and Philips.R.L. "Mathematical Techniques for engineering and scientists", Printice Hall of India, 2006.
- 2. O'Neil P.V. "Advanced Engineering Mathematics", (Thomson Asia Pvt Ltd, Singapore) 2007, cengage learning India private limited.

. .

M	D8152	2			ANAT	OMY	AND 1	PHYSI	OLOG	Y	L	T		P
			Total	l Contac	t Hour	rs: 45					3	0		0
			Prere	equisite:	Anato	my and	l Physi	ology (B.Tech)	l			I
			Cour	se Desi	gned b	y : Bio-	-Medic	al Engi	neering	Bio-N	Iedical E	ngine	eri	ng
O	BJEC	TIVE	<u>S</u>											
		•	To und	lerstand	basics	of Hur	nan Aı	natomy	and Ph	ysiolog	y.			
		•	To stud	dy the o	rgans a	and syst	tems in	volved	in bod	y funct	ions.			
		•	To app	oly this l	knowle	dge int	o biom	edical e	enginee	ring fie	eld.			
C	OURS	FΩI	TCOL	MES (C	Os)									
CO						ecific	parts	and ke	ev tern	ns app	lied in	anato	mv	and
				-	-		-		•		volved		•	
	2.0	and o				1.0								
CC											tems in			
CO)3			_	_		_		-		lied in		-	
		and o		Describ	e impo	mani p	niysioi	ogicai i	песпап	181118 11	volved	iii cei	1, ι	issue,
			Mapp	oing of (_			. ,			
		(H/	M/L in	dicates	strengt						ium, L-L	ow		
						Prog	ramme 	Outcor	mes (Po	os)				
1	COs													
		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO1	1	PO12
	CO1			M	M	Н		M			M			M
2	CO ₂			IVI	H						M			
3	Cate			essiona	l Pi	rofessio		Profes			n Electiv	e l		ject/
				nematic	s (Core (P	C)	Electiv	ve		(OE)			erm
			(PM)				(PE)						per inar/
														nship
					,									R)
4	Appı	oval	41st	- 42nd	Meetin	ngs of A	Acaden	nic Cou	ncil			•		

UNIT I INTRODUCTION OF HUMAN BODY

8

Organization of human body, tissue and cavities – Anatomical planes, positions and sections - Cell: Structure and organelles structure – Functions of Each components in the cell. Cell membrane Transport, Resting membrane potential and ionic basis of potentials, Recording of Action potentials, - Homeostasis

UNIT II BUILDING BLOCKS OF HUMAN BODY

8

Skeletal System: Bones, types and functions - Axial and Appendicular Skeleton. Joints: Definition, Types and functions. Cartilage: An overview - types and functions. Muscular System: Types of Muscle - Skeletal Muscle structure - Action potential and functions - Skin and Appendages.

UNIT III RESPIRATION, NUTRITION AND EXCRETORY SYSTEM

GI Tract: Organization of GI tract – Mouth, Pharynx, Esophagus, Stomach, Small Intestine and Large Intestine - Accessory Organs: Salivary glands, Liver, Pancreas, Gall bladder, Teeth and Tongue. Ingestion, Digestion and Absorption – Factors regulating Movements and Digestion in GI tracts. Respiratory System: The Nose, Pharynx, Larynx, Trachea, Primary Bronchi, Lungs – Mechanism of Breathing – Respiratory Volumes, Measurements and Artificial Respiration. Urinary System: Structure of Kidney, Nephron, Ureter and Urinary bladder. Urine formation and Micturition reflex.

UNIT IV CARDIOVASCULAR AND ENDOCRINE SYSTEM

9

10

Cardiovascular System: Blood vessel, Types and internal structure - Cardiac Muscle: Structureand Action potential – Structure and Components of Heart - Conducting System of Heart – Heart Sounds – Blood Pressure – Regulation of Blood Pressure and Measurements. Endocrine Hormone – General Action – Second Messenger – Anterior and Posterior Pituitary Gland Hormones.

UNIT V NERVOUS SYSTEM AND SPECIAL SENSES

10

Organization of Nervous system: Structure, Types and Properties of Action potential Neurons -

Neuron - Neuroglial Cells – Central Nervous System and Peripheral Nervous System organization

Brain, Lobes and Cortical Areas – Spinal cord arrangement and Plexus formation.
 Autonomic Nervous System: Divisions and control on each system - Reflex Mechanism.
 Special Senses: Structure of Eye and Ear - Errors of refraction and Correction. Conduction pathway of vision and Hearing.

TOTAL: 45 PERIODS

- 1. Anatomy & Physiology, Gary A.Thibodeau, Kevin T.Patton 7th Edition, Mosby Publisher 2009.
- 2. The Human Body, Gillian Pocock& Christopher D.Richards, Oxford University Press, 2009.
- 3. Guyton 'Text book of Medical Physiology WB Jaunder company Philadelphia 10 edition 2002
- 4. Ranganathan T S,Text Book of human Anatomy S. Chand and company New Delhi 1994.

MN8111	CLINICAL INSTRUMENTATION LABORATORY	L	Т	P	C
	Total Contact Hours: 60	0	0	4	2
	Prerequisite: Basic Knowledge to handle Instruments				
	Course Designed by : Bio-Medical Engineering Bio-M	ledical E	Inginee	ring	
OBJECTI	VES				
• To	study the various aspects of bio signals and				
am	plifiers				
• To	understand the performance of surgical diathermy.				
• To	study practically the concepts of audiometer				
COURSE	OUTCOMES (COs)				
CO1 S	tudents will get the clear practical knowledge about the various	us basic	;		_
aı	mplifiers and their characteristics.				
	•				
	Mapping of Course Outcomes with Program outcomes	(POs)			
	(H/M/L indicates strength of correlation) H-High, M-Medi	um, L-L	OW		

		`							,					
	•					Progra	ımm	e O	utcom	es (PO	s)			
		PO												
1	COs	1	PO2	PO3	PO4	PO5	PO	6	PO7	PO8	PO9	PO10	PO11	PO12
2	CO1	Н			M	Н			M			M		M
3	Catego	ory		essional		rofession			rofessio		-	Elective	Proj	
				ematics	S .	Core (PC	<i>(</i>)	E	lective	(PE)	(C) E)	Term	-
			(I	PM)									Semi	inar/
													Interi	nship
													(P)	R)
4	Appro	val	$\Delta 1 \text{st}$	- 42nd	Meet	ings of A	Acad	em	ic Com	ncil				
	¹ ippio	v u I	1130	12114	1,1001	11155 01 7	icau	C111	ic Cou	11011				

LIST OF EXPERIMENTS

- 1. Operational Amplifier-various amplifier configurations
- 2. Study of Timer circuit
- 3. Study of FSK modulation and demodulation
- 4. Design and testing of Bio-Amplifiers
- 5. Recording of Electromyogram.
- 6. Study of ECG machine.
- 7. Study of EEG machine
- 8. Study of Patient monitoring system and biotelemetry
- 9. Bio-chemical measurements
- 10. Performance and testing of surgical diathermy unit using diathermy analyzer
- 11. Plotting of human auditory response using audiometer.
- 12. Study of Multi parameter simulator.

											TOT	AL:	60 I	PERIOD	S
Mì	N8252					BIC	MEC	HANI	CS		L	,	T	P	C
			To	tal Con	tact He	ours: 45	j				3		0	0	3
			Pre	requisi	te: Bio	mechar	nics (B.	Tech/B	s.E Lev	el)	ı			L	
			Co	urse De	esignec	l by:B	io-Med	lical En	gineeri	ng					
OF	JECT	IVE	S												
	• To	get	the c	lear un	derstar	nding of	applic	ation o	f mecha	anics in	medic	ine.			
	• To	stu	dy the	e prope	rties o	f blood	, bone a	and sof	t tissue:	s like a	rticular	cart	ilage	e tendon	.S
	an	d lig	amer	its,											
	• To	o gai	n nec	essary l	knowle	edge ab	out acc	ident aı	nd injur	ies.					
CC	URSE	OU	JTCO	OMES	(COs)										
CC	1 7	The	study	of me	chanic	al prop	erties o	of biolo	gical t	issues	and the	e pro	per	ties of t	olood
			•						-			-	-	and wh	
						ns can b									
CC							_		_				s of	hard ti	ssues
	1	like t				ate a ma									
		(I		11 0		urse Ou rength o			_		`	,	OW/	,	
1			1 1/ 1 1/ 1	L marc	aces sei	ongtii o		ramme				1, 1	<u> </u>		
	Cos	,								ines (1 c) 				
2]	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO	10	PO11	PO12
	CO1	_	Н	M	Н			Н			M				
	COA														_
3	Cotago		Des	ofession	no1	Profess	M	Drofo	sional	Ono	n Elect	irvo		Project	L
3	Catego	Ory		ithemat		Core (ve (PE)	_	n Elect (OE)	ive	Т	Froject Ferm Pap	
			1710	(PM)	.105	Core (10)	Liceti	VC (1 L)	′	(OL)			Semina	
													<u>In</u> t	ernship	
					٦	1									

UNIT I INTRODUCTION

Approval

Introduction to bio-mechanics, relation between mechanics and Medicine, Newton's laws, stress, strain, shear rate, viscosity, visco elasticity, non Newtonian viscosity, soft tissue mechanics, mechanical properties of soft biological tissues. biofluid mechanics.

41st - 42nd Meetings of Academic Council

UNIT II MECHANICS OF CIRCULATION

9

Flow properties of blood, effect of shear rate, hematocrit, temperature and protein Content of blood, rheology of blood and micro vessels, dynamics of circulatory system, turbulence flow around prosthetic heart valves.

UNIT III MECHANICS APPLIED TO ORTHOPAEDICS

9

Orthopedic biomechanics, mechanical properties of bones, stress induced bone growth, kinematics and kinetics of joints, lubrication of joints, and analysis of force in orthopedic implants.

UNIT IV MECHANISM OF BIOLOGICAL SYSTEMS

Skeletal muscles servo mechanism, Cardio vascular control mechanism, respiratory control mechanism

UNIT V BIO MECHANICAL ASPECT OF ACCIDENT INVESTIGATION 9

Experimental and Analytical method of analysis, Clinical evaluation, Head Injury tolerance, rotational injury, spine injury – Accident reconstruction, Analysis of impact, skid analysis – Damage analysis.

TOTAL: 45 PERIODS

9

- 1. Y.C.Fung, Biomechanics: Mechanical properties in living tissues, Springer Verlag, New York 1981.
- 2. Susan J.Hall, Basics Bio Mechanics 5th Edition, McGraw-Hill Publishing Co,Newyork, 2007.
- 3. Subratapal, Text book of Biomechanics, Viva education private limited, 2009.
- 4. C.R Ethier and C.A.Simmons , Biomechanics from cells to organisms, Cambridge university press, 2007.
- 5. D.Dawson and Right, Introduction to Bio-mechanics of joints and joint replacement, Mechanical Engineering publications Ltd. 1989.
- 6. Jacob clime, Head book of Bio Medical Engineering, Academic Press in, Sandiego, 1988.

MN8253	REHABILITATION ENGINEERING	L	T	P	C
	Total Contact Hours: 45	3	0	0	3
	Prerequisite: Knowledge in Rehabilitation Engineering (B.Tech/	B.E)		•
	Course Designed by : Bio-Medical Engineering				

- To develop an understanding of the various rehabilitation aid principle and its working.
- To give various information about rehabilitation medicine and Advocacy.

COURSE OUTCOMES (COs)

By the end of this course the student will be able to design rehabilitation aid and apply them with confidence, to help the challenged people.

Mapping of Course Outcomes with Program outcomes (POs) (H/M/L indicates strength of correlation) H-High, M-Medium, L-Low

1								Progr	ramme	Outcor	nes (PC	Os)	
	COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
	CO1	Н		Н			Н			M			
3	Categor	-	Professional Mathematics (PM)		Profess Core			ssional ive (PE	1	en Elec (OE)		Projec Term Pa Semina nternship	per ar/
4	Approv	al 4	1st - 42	nd Me	etings	of Acad	lemic C	Council	1		•		

UNIT I PROSTHETIC AND ORTHOTIC DEVICES

Hand and arm replacement, different types of models for externally powered limb prosthetics, Lower limb, Upper limb orthotics, and material for prosthetic and orthotic devices, mobility aids.

UNIT II AUDITORY AND SPEECH ASSIST DEVICES

9

9

Types of deafness, hearing aids, application of DSP in hearing aids, Cochlear implants, Voice synthesizer, speech trainer.

UNIT III VISUAL AIDS

9

Ultra sonic and laser canes, Intra ocular lens, Braille Reader, Tactile devices for visually challenged, Text voice converter, screen readers.

UNIT IV MEDICAL STIMULATOR

9

Muscle and nerve stimulator, Location for Stimulation, Functional Electrical Stimulation, Sensory Assist Devices, Design issues.

UNIT V REHABILITATION MEDICINE AND ADVOCACY

Physiological aspects of Function recovery, Psychological aspects of Rehabilitation therapy, Legal aspect available in choosing the device and provision available in education, job and in day-to-day life.

TOTAL: 45 PERIODS

9

- 1. Rory A Cooper, An Introduction to Rehabilitation Engineering, CRC press,2006
- 2. Joseph D.Bronzino, The Biomedical Engineering Handbook, Third Edition: Three Volume Set, CRC Press, 2006
- 3. Levine.S.N.Editor, Advances in Bio Medical Engineering and Medical Physics, Inter University Publication, New York 1968.
- 4. Albert M.Cook and Webster J.G, Therapeutic Medical devices, Prentice Hall Inc., NewJersy, 1982.
- 5. Reswick.J, What is Rehabilitation Engineering, Annual review of Rehabilitation-volume2, Springer-Verlag, New York 1982.

M	N821	1]	HOSP	ITAL I				STEM		L	T	P	С
				To	tal Coi	ntact E	L. Iours: 60	ABOR.	ATOR	. Y			0	0	4	2
									anital l	Managa	mont (Ĭ		
							nowledg		•			Б. тес	I/ D .E,)		
				Co	urse D	esigne	d by : E	Bio-Med	dical E	ngineer	ing					
OF	BJEC	CTIV	VES	,												
				•			sics of .	Java pr	ogram	ming, v	web de	esignin	g and	to	develo	p a
	•	hosp To s	oital stud	into v ab	ormatio	on syst mal an	em. d image	nroces	sing ar	nlicatio	ons usi	ng MA	TLAI	R		
CO)MES			proces	onig up	рпсин	J115 G51	115 1111	1 2 11			
CC)1	Stı	udei	nts g	gain the	e prog	ramme l	oased k	nowled	lge to d	esign a	hospit	al info	orm	nation sy	stem
			/TT			_	ourse O			_		,	,	[
1			(11	/ 1 V1 / 1	Liliui	cates si	rengin (•	<u> </u>			LOV	V	
1		10							Progra	mme O	utcom	es (PO	s)			
1 1																
2	C	Os	PC	01	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1	0	PO11	PO12
2		:Os	PC	01	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1	0	PO11	PO12
2		O1	PC		PO2	PO3 H	PO4	PO5	PO6 H	PO7	PO8	PO9 M	PO1	0	PO11	PO12
	C	O1	I	ł		Н			Н			M		0		
3		O1	I	H Pro	ofessio	H	Profess	sional	H Profe	essional	Ope	M en Elec			Projec	et/
	C	O1	I	H Pro	ofessio	H onal atics		sional	H Profe		Ope	M			Projec Term Pa	et/
	C	O1	I	H Pro	ofessio	H onal atics	Profess	sional	H Profe	essional	Ope	M en Elec			Projec	et/ aper ar/
	C	O1	I	H Pro	ofessio	H onal atics	Profess	sional	H Profe	essional	Ope	M en Elec			Projec Term Pa Semin	et/ aper ar/
	C	O1 egor	у	H Pro Ma	ofession athema (PM)	H onal ttics	Profess Core	sional (PC)	H Profe Elect	essional ive (PE	Ope	M en Elec			Projec Term Pa Semin	et/ aper ar/

LIST OF EXPERIMENTS

- 1. HTML, XHTML, XML programming
- 2. Java Script programming
- 3. Development of front end and back end applications for hospital information system
- 4. Development of Web postal for medical applications
- 5. Study of medical standards-HL7,DICOM,LOINC,Medical data formats
- 6. Processing of BioSignals using Mat Lab
- 7. Image processing techniques using Mat Lab
- 8. Study of Data acquisition systems

TOTAL: 60 PERIODS

MN8001	BIO-STATISTICS	L	T	P	С
	Total Contact Hours:45	3	0	0	3
	Prerequisite: Knowledge in Numerical Maths (B.Tech/B	.E)			
	Course Designed by : Bio-Medical Engineering				
	7				

- To introduce strengths and limitations of measures of central tendency and measures of variability. Classify common statistical tests and tools.
- Distinguish between p-values and confidence intervals as measures of statistical significance. Interpret commonly used regression analysis.

C	OURS	E OU	TCON	IES (C	(Os)								
CO	D1	The s	student	is able	to unde	erstand	the tecl	nniques	used i	n statis	tical & r	egressio	n
		analy	sis.										
CO	02	the s	tudent	is able	to com	pare the	e variou	ıs paraı	neters	used in	statistic	al signifi	icance
			Map	ping of	Cours	e Outco	omes w	ith Pro	gram c	outcome	es (POs)		
		(F	I/M/L i	ndicate	s streng	gth of c	orrelati	on) H	-High,	M-Me	dium, L-	-Low	
						Progra	mme C	utcom	es (POs	s)			

						110816		oute o III	5 5 (2 5 .	')			
1	COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
2	CO1	Н			M	Н		M			M		M
3	Categ	ory		essiona		rofessio	nal	Profes		_	n Electiv		roject/
			Math	ematic	s (Core (P	C)	Electiv	ve		(OE)	Ter	m Paper
			()	PM)				(PE)				Se	minar/
												Int	ernship
												((PR)
								$\sqrt{}$					
4	Appro	oval	41st	- 42nd	Meetir	ngs of A	Academ	nic Cou	ncil	•		1	

UNIT I INTRODUCTION

Introduction to probability, likelihood & odds, distribution variability.

UNIT II STATISTICAL PARAMETERS

Statistical parameters p-values, computation and level chi square test and distribution.

UNIT III REGRESSION ANALYSIS

Regression, correction use of regression, multiple regression.

UNIT IV INTERPRETING DATA

Interpreting life tables clinical trails, epidemical reading and interpreting of epidemical studies, application in community health.

UNIT V META ANALYSIS

META analysis for research activities, purpose and reading of META analysis, kind of data used for META analysis

TOTAL: 45 PERIODS

12

9

6

6

12

REFERENCE:

1. Joseph A. Ingelfinger, Frederick Mosteller, Lawrence A. Thibodeau, James H. Ware Biostatistics in Clinical Medicine (third edition), Singapore, 1994.

MN8002	FINANCE MANAGEMENT IN HOSPITALS	L	T	P	C
	Total Contact Hours:45	3	0	0	3
	Prerequisite: Hospital Management (B.Tech)	•	•	· I	
	Course Designed by : Bio-Medical Engineering				

- The objective of this subject is to expose the students to decision making by corporate board in the areas of finance function.
- To provide an understanding of the basic principles and processes involved in the accounting system of a hospital.

			COUR	RSE OU	J TCO I	MES (COs)									
C	01	The s	tudents	s is equ	iipped	with co	oncept	s, techn	ical an	d analy	ytical too	ols for	optimal			
		mana	gement	of fina	ncial r	esource	es.									
C	02	Also	the co	urse h	elps to	devel	op ski	lls in a	analyzir	ng acco	ounting	stateme	ents for			
		decisi	ion-mal	king in	a hosp	ital sett	ing and	d praction	ce the p	reparat	ion of fi	nal acco	ounts			
			Mapr	oing of	Course	Outco	mes wi	th Prog	ram ou	itcomes	s (POs)					
		(H/		_				_			ium, L-L	ЮW				
			Programme Outcomes (Pos)													
	COs	COs														
1		PO1														
	CO1	Н														
2	CO2					M							L			
3	Categ	gory	Profe	essional	Pı	rofessio	nal	Profes	sional	Oper	Elective	e Pr	oject/			
		•	Math	ematic	s (Core (P	C)	Electiv	ve	-	(OE)	Terr	n Paper			
			(]	PM)				(PE)				Se	minar/			
			`	,				` /				Inte	ernship			
												(PR)			
								$\sqrt{}$								
4	4 Approval 41st - 42nd Meetings of Academic Council															
1 1	4 Approval 41st - 42nd Meetings of Academic Council															

UNIT I INTRODUCTION

4

Finance Function – Meaning – Definition - scope of finance function- Executive functions & Incidental functions - Scope and goal of Financial Management in Hospitals – Profit maximization & Wealth maximization.

UNIT II ACCOUNTING TECHNIQUES

10

Types of Accounting, Hospital accounting - Financial book Keeping, Book keeping obligations. Accounting Concepts & Conventions - Final Accounts :Trading - Profit & Loss Accounts - Balance Sheet.

UNIT III COSTING IN HOSPITALS

Nature & Scope of Cost Accounting – Cost analysis & Classification - Cost Calculation, significance of internal billing in Hospital -Necessary for internal & external controlling cost, cost unit calculation.

UNIT IVMANAGEMENT ACCOUNTING

11

Budgeting & Budgetary control – Cost – Volume – Profit analysis.

UNIT V FINANCING DECISIONS

Cost of capital & Capital Structure – Sources of Short term finance: Management of Working Capital –Sources of Long term finance: share capital, debentures - corporate debit capacity.

TOTAL: 45 PERIODS

- James C. Vanhorne, Fundamentals of Financial Management, Prentice Hall of India Pvt. Ltd., New Delhi, 8th Edition, 1993.
 James C. Vanhorne, Financial Management and Policy, Prentice Hall of India Pvt. Ltd., New Delhi, 9th Edition, 1995.
- 3. Prasannachandra, Financial Management, Tata McGraw Hill Publishing Co. Ltd., New Delhi, First Revised edition
- 4. Financial Management IM PandeyVikas Publishing Co. 1999.

MN8003	FINITE ELEMENT ANALYSIS FOR BIOMEDICAL	L	T	P	C
	ENGINEERING				
	Total Contact Hours: 45	3	0	0	3
	Prerequisite: Basic knowledge of control System (B.Tech/B.E)				
	Course Designed by : Bio-Medical Engineering				
ODIECTI	TES .				

- To introduce the basic concepts of finite element analysis
- To study about the application to Field Problems in Bio mechanics
- To gain ideas about the materials used in the field of biomedical engineering

COURSE OUTCOMES (COs)

At the end of this course the students would have developed a thorough understanding of the basic principles of the finite element analysis techniques with an ability to effectively use the tools of the analysis for solving problems in Bio-mechanical Engineering

Mapping of Course Outcomes with Program outcomes (POs) (H/M/L indicates strength of correlation) H-High, M-Medium, L-Low

_														
							Progra	amme	Outcome	es (PO	s)			
	1	COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
	2	CO1			Н									
	3	Categ	ory	Math	essional ematics PM)		ofession ore (PC		Profession Elective (PE) √		-	Elective (E)	•	
4	1	Appro	oval	41st -	11st - 42nd Meetings of Academic Council									

UNIT I GENERAL INTRODUCTION

10

Historical Background – Mathematical Modeling of field problems in Engineering – Governing Equations – Discrete and continuous models – Boundary, Initial and Eigen Value problems – Variational Formulation of Boundary Value Problems – Ritz Technique –Natural and Essential Boundary conditions - Basic concepts of the Finite Element Method. One Dimensional Second Order Equations – Discretization – element types- Linear and Higher order Elements – Derivation of Shape functions and Stiffness matrices and force vectors - Assembly of Matrices - solution of problems from solid and bio mechanics- Structural, stress, and strain analysis of the human body and/or artifical implants,

UNIT II BEAM ELEMENTS AND SCALAR PROBLEM IN 2D

9

Fourth Order Beam Equation –Transverse deflections - Natural frequencies of beams and Longitudinal vibration. Second Order 2D Equations involving Scalar Variable – Variational formulation –Finite Element formulation – Triangular elements – Shape functions and element matrices and vectors. Application to Field Problems in Bio mechanics – Quadrilateral elements

Higher Order Elements. Natural co-ordinate systems – Isoparametric elements – Shape functions for isoparametric elements – One, two and three dimensions – Serendipity elements – Numerical

integration and application to plane stress problems transformation in ^{,and} coordinates-Jacobian of transformation-order of convergence- numerical integration —example problems-shape functions in natural coordinates- rectangular elements- Lagrange family- Serendipity family-rectangular prisms- tetrahedral elements

UNIT IVISOPARAMETRIC FORMULATION AND MISCELLANEOUS TOPICS 8

Introduction to elasticity equations – stress strain relations – plane problems of elasticity – element equations Plane stress, plane strain and axisymmetric problems – stress-strain-time or constitutive equations for soft connective tissue components Modelling and force analysis of musculoskeletal systems– Stress calculations - Plate and shell elements – Introduction to flow problems- solution of problems in fluid mechanics- numerical examples -plates and shells

UNIT V NON-LINEAR ANALYSIS

9

Introduction to Non-linear problems - some solution methods- computational procedure-simple material nonlinearity, stress stiffening, contact interfaces- problems of gaps and contact- geometric non-linearity- modeling considerations- Impact analysis. Mechanical properties of biological and commonly used biomedical engineering materials -. Critical reviews of finite element analysis in biomechanical research.

TOTAL:45 PERIODS

TEXT BOOKS:

- 1. Seshu. P. "Textbook of Finite Element Analysis" Prentice Hall of India, 2003.
- 2. J.N. Reddy, "Finite Element Method" Tata McGraw Hill, 2003.
- 3. S.S. Rao, "The Finite Element Method in Engineering "Butter worth heinemann, 2001.
- 4, Reddy, J.N, "An Introduction to the Finite element Method", McGraw Hill, 1985.

MN8004	HEALTH INFORMATICS	L	T	P	C
	Total Contact Hours: 45	3	0	0	3
	Prerequisite: Basic Knowledge on Hospital Healthcare (B	.Tech)	ı		
	Course Designed by : Bio-Medical Engineering				

• To enable the students to gain knowledge in various aspects of informatics related to health and the techniques to apply these in proper health care delivery

COURSE OUTCOMES (COs)

CO1 The student understands the various aspects of informatics applied in health industry so that quality of health care is improved.

Mapping of Course Outcomes with Program outcomes (POs) (H/M/L indicates strength of correlation) H-High, M-Medium, L-Low

						Progra	mme (Outcom	es (POs	s)			
1	COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
2	CO1	Н			M	Н		M			M		M
3	Categ	ory	Math	essiona ematic PM)		rofessio Core (P		Profes Electiv (PE)		_	n Electiv (OE)	Ter Se Int	roject/ m Paper eminar/ ernship (PR)
4	Appro	oval	41st	- 42nd	Meetir	ngs of A	Acaden	nic Cou	ncil	•		•	

UNIT I HEALTH INFORMATICS 9

Historical highlights and Evolution, Hospital Information System – its characteristics and functional online and offline modules, Health Informatics, Bioinformatics, Medical Informatics, Clinical Informatics, Nursing Informatics, Public Health Informatics, e – health services, Evidence Based Medicine, Bioethics, Virtual Hospital

ELECTRONICS PATIENT RECORDS AND

UNIT II STANDARDS

9

Electronic Patient Record, Medical data formats, – Medical Standards HL7 – DICOM - IRMA -

LOINC - PACS - Medical Standards for Vocabulary - ICD 10, DRGs, MeSH, UMLS, SNOMED - Healthcare Standards - JCAHO, HIPAA

UNIT III BIOINFORMATICS AND TECHNOLOGIES

9

Bio-information technologies, Semantic web and Bioinformatics, Genome projects - Education and Training - Nano technology in Healthcare - Nanomedicine, Nanopharma, CNT based Nano sensor, BioCom chip, Medical Nanorobo - Virtual Reality and Multimedia Applications in Medicine

UNIT IV JAVA PROGRAMMING

9

Design and Development of Hospital Information Systems – Developing front-end, backend and Client – Server interface programs in Java Environment – SQL

Medical Networks - Java script programming - Web Design and programming - Design of Web portal services in medicine.

TOTAL: 45 PERIODS

- 1. RamachandraLele, Computers in Medicine Progress in Medical Informatics, Tata McGraw Hill Publishing Company, New Delhi, 2005
- 2. Herbert Schildt, The Complete Reference JAVA, Tata McGraw Hill Publishing Company, New Delhi, 2005
- 3. Mohan Bansal M S, Medical Informatics, Tata McGraw Hill Publishing Company, New Delhi, 2005
- 4. Yi-Ping Phoebe, Bioinformatics Technologies, Springer International, New Delhi, 2007.
- 5. OrpitaBosu, Bioinformatics Databases, Tools and Algorithms, Oxford University Press, 2007.
- 6. John P Woodward, Biometrics The Ultimate Reference, Dreamtech Publishers, New Delhi. 2003
- 7. Ranjan Parekh, Principles of Multimedia, Tata McGraw Hill Publishing Company, New Delhi, 2006
- 8. H M Dietel, Internet and World Wide Web, AB Goldberg publishers, New Delhi, 2007
- 9. AtulKhate, Cryptography and network security, Tata McGraw Hill Publishing Company, New Delhi, 2008
- 10. Lukas K Baehler, Bioinformatics Basics, Applications in Biological Sciences and Medicine, Taylor & Francis, London, 2005. Deitel, "Java How to Program", Pearson Education / PHI, 2006

MN8005	HEALTH POLICY AND EQUIPMENT	L	T	P	\mathbf{C}
	MANAGEMENT				
	Total Contact Hours: 45	3	0	0	3
	Prerequisite: Knowledge in Hospital Management (B.Te	ch)			
	Course Designed by : Bio-Medical Engineering				

- To expose the students for planning and operation of hospitals in a detailed manner which will include all facts of hospital planning activities covering every department that is involved both in clinical care as well as supportive services.
- To introduce the equipment maintenance management skills and how to protect equipment from electromagnetic interferences.

C	OURS	E OU	TCOM	IES (C	Os)									
CO	D1	Under	rstandiı	ng the v	arious	health	policie	S						
CO)2	Plann	ing act	ivities a	t health	n care c	entres	•						
CO)3	Equip	ment in	nstallati	on ,ser	vice &	calibra	ation ne	eds					
		(H/		_				th Prog on) H-			s (POs) ium, L-L	ow		
	Programme Outcomes (POs)													
1	1 COs PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12													
	CO1 H H H H M M													
	CO2					M							L	
2	CO3	M		M										
3	Categ	gory	Math	essional ematics PM)		ofessio Core (P		Profess Electiv (PE)		_	a Elective (OE)	Term Sen Inter	pject/ Paper pinar/ rnship PR)	
4														

UNIT I HEALTH SYSTEM

9

Health organization of the country, the state and cities, health financial system, teaching cum research hospitals, General Hospital, PHC reference system.

UNIT II NATIONAL HEALTH POLICY

9

Need for evaluating a health policy, need for providing primary health care, Health education, health insurance, health legislation, inter sectoral cooperation.

UNIT III EQUIPMENT MAINTENANCE MANAGEMENT

9

Organizing the maintenance operation, biomedical equipment procurement procedure, proper selection, compatibility, testing and installation, purchase and contract procedure, trained medical staff, on proper use of equipment and operating instructions. Maintenance job planning, preventive maintenance, maintenance budgeting, contract maintenance.

UNIT IV LOGISTIC SUPPORT & RELIABILITY

9

Maintenance equipment and Tools, failure analysis, spare parts and maintenance

UNIT V EMI TO HOSPITAL EQUIPMENTS

Principles of EMI, computation of EMI, Method of suppressing and isolating the unit from interference.

TOTAL: 45 PERIODS

REFERENCES:

- 1. Antony Kelly, 'Maintenance Planning & control' Butterworth, London 1984.
- 2. Hans Pleiffveradammann (ed) `Hospital Engineering in developing countries, GTZ report Eschborn, 1986.
- 3. R.C.Goyal `Human Resource Management in Hospitals' Prentice Hall of India, New Delhi, 2000.

9

MN8006	HOSPITAL ARCHITECTURE	L	T	P	C
	Total Contact Hours:45	3	0	0	3
	Prerequisite: Knowledge in Hospital Management				
	Course Designed by : Bio-Medical Engineering				

• To expose the students to planning and operation of hospitals in a detailed manner which will include all facets of hospital planning activities covering every department that is involved both in clinical care as well as supportive services.

COURSE OUTCOMES (COs)

CO1 The student will be able to follow the newest findings in the area of hospital planning, health consultancy, hospital waste and implement the perspectives in constructing hospital standards

Mapping of Course Outcomes with Program outcomes (POs) (H/M/L indicates strength of correlation) H-High, M-Medium, L-Low

							Progra	mme (Outcom	es (POs	s)			
	1	COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
	2	CO1	Н		Н			Н			M			
	3	Categ	gory	Math	essiona nematic PM)		rofessio Core (P		Profes Electiv (PE)		_	n Electivo (OE)	Terr Ser Inte	oject/ n Paper minar/ ernship PR)
									V					
4	1	Appro	oval	41st	- 42nd	Meetir	igs of A	Acaden	nic Cou	ncil				

UNIT I INTRODUCTION TO HEALTH CARE SYSTEM

9

International and National level policy framework for healthcare facilities – Types of healthcare facilities based on public and private ownership, bed size and type of health care services based on outpatient ,inpatient and diagnostic care - Organizational, function and structure of the hospital.

UNIT II HOSPITAL PLANNING

9

Principles of planning, regionalization, hospital planning team, planning process, size of the hospital, site selection, hospital architect, architect report, equipping a hospital, interiors & graphics, construction & commissioning, planning for preventing injuries, electrical safety.

UNIT III PLANNING & DESIGNING OF DIFFERENT SERVICES IN HOSPITALS 9

Planning and designing of administrative services, medical and ancillary services, nursing services, supportive services, public areas and staff services, hospital services

UNIT IV STANDARDS AND NORMS FOR HOSPITALS

9

Design and construction standards for the hospitals namely BIS –India and JCAHO, AIA and NHS

– general guidelines and standard for out-patient area, in-patient area and diagnostic area in the hospitals. Voluntary & Mandatory standards, General standards, Mechanical standards, Electrical Standards, Standard for centralized medical gas system, Standards for biomedical

UNIT V FACILITIES FOR SUPPORTIVE SERVICES

Transport, Information system, Communication, Food services, Mortuary, Heating Ventilation and Air Conditioning, Medical gases, House Keeping, Laundry.

TOTAL: 45 PERIODS

9

- 1. G.Kunders."Hospitals- Facilities Planning & Management", Tata Mcgraw Hill education-2004.
- 2. S.K.Gupta, S.kant, R.Chandrashekhar, S.Satpathy. "Modern trends in planning and designing of hospitals: Principles and practice", Jaypee Brothers-Medical publishers, New Delhi, 2007.
- 3. Sa Tabish." Hospital and Nursing Homes planning, Organisation and Management", ", Jaypee Brothers-Medical publishers, New Delhi, 2003
- 4. Purnima Sharma, Sangeet Sharma, NerendraMalhotra, JaideepMalhotra. "Step by Step Hospital Designing and Planning", 2nd Edition, Jaypee Brothers-Medical publishers, New Delhi, 2010.

MN8007	HOSPITAL PLANNING, ORGANIZATION AND	L	T	P	C
	MANAGEMENT				
	Total Contact Hours: 45	3	0	0	3
	Prerequisite: Basic Knowledge in hospital management (B.7	Tech)			
	Course Designed by : Bio-Medical Engineering				

- With an objective of imbibing a professional approach amongst students towards hospital management.
- The subject encompasses management principles, staffing and marketing processes, discussing their significance and role in effective and efficient management of health care organizations.

.

COURSE OUTCOMES (COs)

CO1 The student acquires knowledge of the principles and practices essential for managing a hospital organization

Mapping of Course Outcomes with Program outcomes (POs) (H/M/L indicates strength of correlation) H-High, M-Medium, L-Low

						Prog	ramme	Outco	mes (Po	os)			
1	COs												
		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
2	CO1	Н			M	Н		M			M		M
3	Cate	gory	Profe	essiona	l P	rofessio	nal	Profes	sional	Opei	n Electiv	e Pr	oject/
			Math	nematic	s (Core (P	C)	Electi	ve		(OE)	Terr	n Paper
			(PM)				(PE)				Sei	minar/
												Inte	ernship
												(PR)
								$\sqrt{}$					
4	App	roval	41st	- 42nd	Meetin	ngs of A	Academ	ic Cou	ncil				

UNIT I FORMS OF ORGANISATION

8

Sole proprietorship, Partnership, Company-public and private sector enterprises, Principles of management, Evolution of management.

UNIT II PRINCIPLE OF HOSPITAL MANAGEMENT:

10

Importance of management and Hospital, Management control systems. Forecasting techniques decision-making process

UNIT III STAFFING

6

Staffing pattern in hospitals, Selection, Recruiting process, Training of staff, Organizational structures, Career development

UNIT IV MARKETING AND MANAGEMENT

10

Basic concepts marketing, Principles of social marketing, Social marketing in health sector, Consumer behavior and research health, Advertising in Health Sector, Relevance of emarketing of Health care services

UNIT V COMPUTER IN HOSPITAL

System Development life cycle, Reasons to use computers in hospital, main categories of information systems in hospitals

TOTAL :45 PERIODS

- 1. Goyal R.C., Human Resource Management in Hospital, Prentice Hall of India Pvt. Ltd., New Delhi, 2000.
- 2. Nauhria R.N. and RajnishPrakash, Management & systems, New Delhi Wheeler publishing, 1995.
- 3. Koontz, Essentials of Management, McGraw Hill, 1995.

M	N8008				HOSI	PITAL Y	WAST	E MAI	NAGE	MENT		Ĺ	T	P	C
			Т	Total Co	ntact F	Hours:45	<u> </u>				3	3	0	0	3
			P	rerequis	ite: kr	nowledge	e on Ho	ospital l	Manage	ement (B.Tech)			
			C	Course D	esigne	ed by : E	Bio-Med	dical E	ngineer	ing					
OI	BJECT •	To dis	uno pos	derstand al. To ement.		_							-	•	
CC	OURSE	OU	TC	OMES (COs)										
CC	D1	Awa	rene	ess of en	vironi	nental h	azards								
CC)2 (Chal	leng	ges agair	nst the	infectio	us dise	ases To	create	litter f	ree zon	e arou	nd h	nospital	S
CC)3 N	New	& 6	efficient	metho	ods in di	sposing	the ho	spital v	vaste					
CC)4 <i>A</i>	A wa	rene	ess of en	vironi	nental h	azards		_						
	•	(Mappin M/L indic		ourse O trength							юw		
1							Prog	ramme	Outcor	nes (Po	os)				
2	Cos		Ю1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1	$\begin{bmatrix} 0 \end{bmatrix}$	PO11	PO12
_	CO1		Н	Н	M			Н			M				M
	CO2	_				Н			Н			M		Н	
	CO3			M	M		M	Н	Н		M				M
3			Т	Profession		Profess	gional	Drofo	ssional	On	on Elec	tivo	<u> </u>	Droice	
3	Catego	огу		Profession Mathema (PM)	tics	Core			ive (PE	- I	en Elec (OE)	uve		Project Ferm Pa Semina Ernship	per .r/

UNIT I INTRODUCTION

Approval

9

 $\label{lem:continuous} The \ Medical \ Waste \ Stream, \ Types \ of \ waste \ - \ Waste \ management \ elements - Categories \ of \ Bio-medical \ waste- \ Regulatory \ Requirements.$

UNIT II PRINCIPLES OF STERILIZATION

9

Disease Transmission - Disinfection methods – Sterilization - steam sterilizing (Auto claving) - Microwave (Non-burn treatment technology).

41st - 42nd Meetings of Academic Council

UNIT III DISPOSAL OF WASTE

9

Disposal methods - Incinerator - Hazardous waste, radioactive waste, liquid waste destruction - landfill.

UNIT IV	CONTROLS APPLIED TO WASTE MANAGEMENT	9
Air pollution	n and Emission control, Instrumentation and monitoring, Crematories	
UNIT V	ENVIRONMENTAL SAFETY, RISKS & PUBLIC ISSUES.	9
Risk manag	ement in hospitals - Environment issues in hospitals - Risk analysis	
	TOTAL: 45 PERIODS	

- 1. C.R.BRUNNER, Medical Waste Disposable Handbook, Incentrated, Consultant in Corporated, Virginia, 2000.
- 2. C.R.BRUNNER, Incentrated Consultant in CorporatedIncentration System Hand Book, Virginia

MN8009	HUMAN RESOURCES MANAGEMENT IN	L	T	P	C
	HOSPITAL				
	Total Contact Hours:45	3	0	0	3
	Prerequisite: Basic knowledge in Hospital management ((B.Tech))		
	Course Designed by : Bio-Medical Engineering				
OBJECTIVES					

- This subject acquaints the students with major functions of HRM aligned with the business strategy.
- The subject encompasses the concept of best fit employee, training & executive development, sustaining employee interest and performance appraisal

COURSE OUTCOMES (COs)

CO1 Upon the completion of this course, the student is well acquainted with the knowledge about the significance and role in effective and efficient management of human resources in health care organizations

Mapping of Course Outcomes with Program outcomes (POs) (H/M/L indicates strength of correlation) H-High, M-Medium, L-Low

						Prog	ramme	Outcor	nes (Po	os)			
1	Cos												
		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
2	CO1	Н	Н	M			Н			M			M
3	Categ	gory	Math	essiona ematic PM)		ofessio Core (Po		Profess Electiv (PE)		_	Elective (OE)	Term Ser Inte	oject/ n Paper ninar/ rnship PR)
4	Appro	oval	41st	- 42nd	Meetin	gs of A	cadem	ic Cou	ncil			•	

UNIT I PERSPECTIVES OF HUMAN RESOURCE MANAGEMENT 9

Evolution of Human Resource Management - Importance of Human factor, Objectives of Human resource Management - Human Resource Policies - Need for HRD/HRM in Healthcare Organisation - Computer Applications In Human Resource Management.

UNIT II THE CONCEPT OF BEST FIT EMPLOYEE

9

Organisational Job Design - job description - job analysis - job rotation-job evaluation- Manpower planning- Importance of Human Resource Planning, Forecasting of Human Resource Requirements - Selection procedures - test, Validation, Interviews, Recruitment, Medical Examination.

UNIT III TRAINING & EXECUTIVE DEVELOPMENT

9

Types of Training methods and their benefits - Executive development Programme - common practices - Benefits, self-development - knowledge Management.

UNIT IV SUSTAINING EMPLOYEE INTEREST

9

Wage and Salary Administration – concept of incentives and its operational implications – Participative decision making – Concept of Collective Bargaining – Compensation plans –

Rewards – Motivation – Theories of motivation - Grievances and redressal methods.

UNIT V PERFORMANCE APPRAISAL

9

Importance of Performance Appraisal - Methods of Performance Evaluation, - Traditional methods - Modern methods - Feedback - Promotion - Demotion - transfer. Implications of jobs change. The control process, Methods and Requirements of Effective control system.

TOTAL: 45 PERIODS

- 1. R.C.Goyal, Human Resource Management in Hospitals, Prentice Hall of India, 2000.
- 2. Mamoria C.B. and MamoriaS.Personnel Management, Himalaya Publishing Company, 1997
- 3. Decenzo and Robbins, Human Resource Management, Wiley & Sons, Singapore, 1999.

MN8010	PHYSICS IN MEDICINE	L	T	P	С
	Total Contact Hours:45	3	0	0	3
	Prerequisite: basic knowledge in medical Physics (B.Tec	h)			
	Course Designed by : Biomedical				

OBJECTIVES

• To develop an understanding of physics involved in various imaging modalities and the effect of radiation on human body

COURSE OUTCOMES (COs)

The students understands the physics behind radiation used in medical techniques and acquires in-depth knowledge about optics & ultrasound along with their effects of radiation

Mapping of Course Outcomes with Program outcomes (POs) (H/M/L indicates strength of correlation) H-High, M-Medium, L-Low

	Co					Prog	ramme	Outco	mes (Po	os)			
1	S												
		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
2	CO1	M		M			Н			M			Н
3	Categ	gory		essiona nematic		rofessio Core (P		Profes Electiv	sional ve		n Electiv (OE)		oject/ n Paper
				PM)				(PE)				Inte	minar/ ernship (PR)
								V					
4	Appr	oval	d 41st - 42nd Meetings of Academic Council										

UNIT I PRINCIPLES OF NUCLEAR PHYSICS

Traditional definition of atom, periodic system of elements, mechanical properties of atom, emission of light and its frequencies . Electromagnetic spectra, Laws of equilibrium - Theory of

- electron capture - internal conversion - nuclear isomerism- Natural radioactivity, decay Decay

series, type of radiation and their applications, accelerator principles; reactor and cyclotron produced isotopes - fission products- artificially produced isotopes and its application - Radionuclides used in Medicine and technology.

PHYSICS OF INFRARED, MICROWAVE AND RADIO

UNIT II FREQUENCY

9

9

Production and properties - interaction mechanism of RF and mirocwaves with biological systems: Thermal and non-thermal effects on whole body, lens and cardiovascular systems - tissue characterization and Hyperthermia and other applications. Biomagnetism - Effects – applications-Infrared detectors—thermographicequipments—quantitative medical thermography—pyroelectric video camera—applications of thermography.

UNIT III LASER PHYSICS AND PHOTOMEDICINE

9

Characteristics of laser radiation , Laser speckle, biological effects, laser safety management Synthesis of vitamin D in early and late cutaneous effects, Phototherapy, photo hemotherapy, exposure level, hazards and maximum permissible exposures. Optical characteristics of biomolecules from the point of spectroscopy – principles of UV – Visible absorption – IR and FTIR absorption – Raman and Fluorescence spectroscopy – application with regard to

characterization of biomolecules – blood oxygen, glucose measurements, monitoring drug concentration, cancer

UNIT IV DIAGNOSTIC ULTRASOUND

9

Ultrasonic waves – generation and detection of ultrasound –Beam characteristics—attenuation of ultrasound –specific acoustic impedance—reflection at body interfaces—Coupling medium ---

interaction ultrasound with tissues—deleterious effects of Ultrasound- Safety levels of Ultrasound- real time scanners image clarity---Resolution ---axial and lateral resolution ---- Artifacts---Pulse echo imaging ----Obsterics abdominal investigations- Echo cardiograph (UCG) — The Doppler Effect-Doppler Shift---continuous wave Doppler system ---Pulsed wave Doppler systems---duplex scanning-display devices for ultrasonic imaging

UNIT V RADIOBIOLOGICAL EFFECT OF RADIATION

9

Target theory, single hit and multi target theory, cellular effects of radiation, DNA damage, chromosomal damage, Somatic effect: Radio sensitivity protocol of different tissues in human ,LD 50/30 effect, Genetic effect: Threshold of linear dose effect, relationship factors affecting frequency of radiation induced mutation, biological effect of microwave, Rf wave and UV radiation.

TOTAL: 45 PERIODS

- 1. Moselley 'Non ionizing Radiation' Adam HilgarBrustol 1998
- 2. Branski.S and Cherski.P 'Biological effects ofmicrowave ' Hutchinson & ROSS Inc.Stondsburg 1980
- 3. Glasserr .O.Medical Physics Vol.1, 2,3 year Book Publisher Inc Chicago, 1980
- 4. Eric .J.Hall, and Amato .J.Giaccia , 'Radiobiology for radiologist' , Lippincott Williams and Wilkins..2006
- 5. Sorenson James A, 'Physics in Nuclear Medicine', W.B. Saunder's Company, 1987.
- 6. Diagnostic Ultrasound applied to OBG-Sabbahaga-Maryland -1980
- 7. Basic Ultrasound-Hylton B Meire and Pat Farrant-John Wiley & Sons –NY-1994.
- 8. MRI in Practice-Catherine Westbrrok
- 9. The essential Physics for Medical Imaging Jerrold T Bushberg

M	N8011	l		Ql	U ALIT			NCE A		FETY	L	T	P	С
								PITALS			3	0	0	3
			Prere	quisite:	Basic	knowle	dge in	Hospita	al safety	y (B.Te	ch/B.E)			
			Cours	se Desig	gned by	y : Bio-	Medic	al Engir	neering					
OF	BJECT	TVES												
	•	tow To	ards co make	ntinuo the stu	us impr idents	oveme aware	nt of po	atient ca	are . of bior	nedical	re Quali engine nce of el	er in h	ospit	als,
CC	OURS	E OU'	ГСОМІ	ES (CO	s)									
CC	D1	the pr	ocedur ures to Mapı	es used be follo ping of	in qua wed in Course	lity con hospit Outco	ntrol ar als. mes w	ith Prog	gram o	tivities utcome	rledge ar as well s s (POs) lium, L-I	as safet		0
								Outco			· · · · · · · · · · · · · · · · · · ·			
1	Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	012
2	CO	Н	Н	M			Н			M			N	Л
3	3 Category Professional Mathematics (PM) Professional Core (PC) Professional Elective (PE) Seminar/ Internship (PR)													
4	App	roval	41st -	- 42nd	Meetin	igs of A	Acaden	√ nic Cour	ncil					

UNIT ISTANDARDIZATION OF QUALITY MEDICAL CARE IN HOSPITALS 9

Define Quality- Need for Standarization Quality Management, TQM in Health care organization-Quality assurance methods ,QA in (Medical Imaging & Nuclear medicine) Diagnostic services – Classification of equipments

UNIT II REGULATORY REQUIREMENT FOR HEALTH CARE

9

FDA regulations, Accreditation for hospitals - JCI, NABH and NABL, Other regulatory Codes.

UNIT III HOSPITAL SAFETY

9

Security & Safety of Hospital -Property, Staff & Patients, Radiation safety, Safety precautions, hazardous effects of radiation, allowed levels of radiation, ICRP regulations for radiation safety, Disposal of Biological waste.

UNIT IV ELECTRICAL & FIRE SAFETY

9

Sources of shocks, macro & micro shocks -Hazards, monitoring and interrupting the Operation from leakage current- Elements of fire, causes of fire, Action to be taken in case of fire in a Hospital.

Patient Safety Organization- Governmental & Independent, Measuring Quality care – Evaluation of hospital services – six sigma way, Quality Assurance in Hospitals Sop's – Patient Orientation for Total Patient Satisfaction. 5S techniques

TOTAL:45 PERIODS

REFERENCES:

- 1. Cesar A. Cacere& Albert Zana, The Practice of Clinical Engg. Academic press, New York, 1977.
- 2. Webster J.G and Albert M.Cook, Clinical Engg, Principles & Practices, Prentice Hall Inc., Engle wood Cliffs, New Jersy, 1979.
- 3. B.M.Sakharkar, Principles of Hospital administration and Planning, JAYPEE Brothers, Medical Publishers (P) Ltd.
- 4. K.ShridharaBhat, Quality Management, Himalaya Publishing House.
- 5. Karen Parsley, Karen Parsley Philomena Corrigan" Quality improvement in Healthcare, 2nd edition ,Nelson Thrones Pub, 2002
- 6. Sharon Myers "Patient Safety & Hospital Accreditation A Model for Ensuring Success" Springer Publishers 2012

Joseph F Dyro "Clinical Engineering Handbook" Elsevier Publishers, 2004

Mi	N8012	2			CESS	AL PRO SING TO BIOLO	ECHN	IQUES	S APPI				T	P	С
			To	otal Co	ntact H	Iours:45	í				3	3	0	0	3
			Pr	erequis	ite: kn	owledge	e in sig	nal and	image	proces	sing (B	.Tech	/B.E	E)	
			Co	ourse D	esigne	d by : B	Bio-Med	dical Er	ngineer	ing					
OF	BJECT	TIVE	S												
	• T	o int	troduc	e the b	oasics o	of signal	proces	ssing an	d its ap	plication	on to b	iologi	cal s	systems	
			ake th cation		ents to	understa	and the	fundan	nentals	of imag	ge proc	essin	g and	d its	
CC)URS	E OU	JTCC	MES ((COs)										
CC) 1	Wid	len ra	tional c	lesign	approac	hes to b	oiomate	erials er	ngineer	ing				
CC)2	Ider	ntify s	ignifica	ant gap	require	ed to ov	ercome	challe	nges ar	nd furth	er de	velo	pment	
CC)3	Dev	elop	critical	analys	es of bi	omateri	ials thro	ough pr	oposal	writing	and	revie	ew.	
		(ourse Ourse Ourse Ourse							Low		
1									Outcor						
2	Co		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1	0	PO11	PO12
	CO		Н	Н	M			Н			M				M
	CO	2				Н			Н			M		Н	
	CO	3		M			M	Н			M				
3	Cate	gory		rofessio athema (PM)	atics	Profess Core			ssional ive (PE		en Elect (OE)	tive		Project erm Pap Semina ernship	per r/
4	Appr	oval	41	lst - 42	nd Me	eetings o	of Acad	$\int_{\text{lemic C}}^{}$	Council						

UNIT I INTRODUCTION

10

Definition of biomaterials, mechanical properties, surface chemistry of materials, surface modification, Tissue Reaction, Wound Kinetics, Bio Compatibility.

UNIT II MATERIALS IN MEDICAL DEVICES

10

Metals, Ceramics, Polymers and Composites. Material preparation, chemical composition, Properties, uses in medicine and biosciences and failure mechanisms.

UNIT III STERLIZATION OF BIOMATERIALS

7

Sterilization techniques: – process and mechanism of action of sterilization, electron beam sterilization, ethylene oxide, chlorine dioxide sterilization sterilization

.

UNIT IV TESTING OF MATERIALS

8

Testing with Tissue Culture – in vitro and in vivo assessment of biocompatibility, Testing with Soft Tissues and testing at non Thrombogenic surface – blood compatibility and thromobogenicity.

Cardiac Implants, Orthopedic Implants, Neuro Muscular Implants, Transcutaneous Implants, Intraocular lenses.

TOTAL: 45 PERIODS

- 1. J.H.U.Brown (Ed), Advances in Bio Medical Engineering, Academic Press 1975.
- 2. Andrew F.VonRacum, Hand Book of Bio Medical Evaluation, Mc-Millan Publishers, 1980.
- 3. Jacob Cline, Hand Book of Bio Medical Engineering, Academic Press in Sandiego, 1988.
- 4. Jonathan Black, Biological Performance of Materials- Fundamentals of bio compatibility, 4th Edition, CRC Press 2005.
- 5. Larry L. Hench and Julian R.Jones, Biomaterials, Artificial organs and Tissue Engineering, 2005.
- 6. Buddy D.Ratner, Allan S. Hoffman, Frederick J. Schoen, Jack E. Lemons, Biomaterial Science; An Introduction to Materials in Medicine, 2nd Edition, Elsevier Academic Press, San Diego, 2004.

MD8071	ADVANCED NEURAL COMPUTING	L	T	P	C
	Total Contact Hours:45	3	0	0	3
	Prerequisite: basic in neural network (B.Tech/B.E)	<u>'</u>			•
	Course Designed by : Biomedical Engineering				
OBJECTIVES					-

• The course will teach a variety of contemporary approaches to neural networks and introduce the theory underlying these approaches. The approaches to be covered will include such things as biological and statistical foundations of neural networks, Perception, MLPs, RBFN,SVM and competitive learning. Additionally, a brief introduction to optimization techniques using Genetic algorithm and its applications will be given.

COURSE OUTCOMES (COs)

CO1	Upon completion of this course student gains knowledge about various
	neural networks that can be used for biomedical signal analysis and Medical
	image analysis. Also about the genetic algorithms as well as techniques used
	in its implementation

Mapping of Course Outcomes with Program outcomes (POs) (H/M/L indicates strength of correlation) H-High, M-Medium, L-Low

						Prog	ramme	Outco	mes (Po	os)			
1													
	(PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
2		M		M			Н			M			Н
3	Categ	Professional Mathematics (PM)				rofessio Core (P		Profes Electiv (PE)		_	n Electiv (OE)	Terr Se: Inte	oject/ m Paper minar/ ernship (PR)
4	Appr	oval	val 41st - 42nd Meetings of Academic Council										

UNIT I INTRODUCTION TO ARTIFICIAL NEURAL SYSTEMS

Biological Neurons and their Artificial models, Models of Artificial Neural Networks, Learning and Adaptation, Neural Network Learning Rules, Single Layer Perceptron Classifiers.

UNIT II BPN AND BAM

9

8

Back Propagation Network, Generalised Delta Rule, BPN Application, Associative Memory Definition, BAM, Hopfield Memory, Simulated Annealing-Boltzmann Machine.

UNIT III OTHER NETWORKS

10

Counter Propagation Network, Feature Mapping, Self Organising Feature Maps, Adaptive Resonance Theory (ART) Network Descriptions.

UNIT IV GENETIC ALGORITHMS & IMPLEMENTATION TECHNIQUES 8 The Appeal of Evolution, Search Spaces and Fitness Landscapes, Elements of Genetic

Algorithms, Data Structures, Adaptive Encoding. Selective Methods, Genetic Operators, Fitness Scaling, GA applications

UNIT V ADVANCES AND APPLICATIONS

10

Support Vector Machines, R B F Network, Neocognitron. Evolving neural networks using GA, Applications of ANN in biomedical signal analysis and Medical image analysis

TOTAL: 45 PERIODS

- 1. Philip D.Wasermann, Advanced Methods in neural Computing, Van NostrandReinhold,NewYork 1993.
- 2. David Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning, Addison Wesley USA,1997.
- 3. Melanie Mitchell, An Introduction to Genetic Algorithms: Prentice Hall of India, New Delhi 1998..
- 4. Simon Haykins, Neural Networks, Prentice Hall international Inc, 1999.
- 5. James A Freeman and David M. Skapura, Neural Networks, Addison Wesley, India 1999.

MD8072	ADVANCED NEURAL ENGINEERING	L	T	P	C
	Total Contact Hours:45	3	0	0	3
	Prerequisite: basic in neural network (B.Tech/B.E)	•	•	·II	•
	Course Designed by : Biomedical Enginnering				
	•				

OBJECTIVES

- Neural engineering and rehabilitation research applies neuroscience and engineering methods to analyze central and peripheral nervous system function and to design clinical solutions to neurological disorders or injury.
- To study the basics of Nervous system
- To understand the development and arrangement of neural tissue To study the neuronal disorders and injuries
- To study the repairing and reconstruction mechanism of nervous system.

COURSE OUTCOMES (COs)

Through this course of study application of basic science and engineering techniques, neural engineers can develop methods to record from and exert control over the nervous system and associated organ systems.

Mapping of Course Outcomes with Program outcomes (POs) (H/M/L indicates strength of correlation) H-High, M-Medium, L-Low

						Prog	ramme	Outco	mes (Po	os)			
1		DO 1	DOA	DOS	DO 4	DO.	DOC	DO7	DOG	DOO	DO 10	DO 1.1	DO 12
1		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
2		M		M			Н			M			Н
3	Cate	Category Professional Mathematics (PM)			ofessio Core (P		Professional Elective (PE)			n Elective (OE)	Ter Se	roject/ m Paper eminar/ ernship (PR)	
4	App	roval	41st -	- 42nd	Meetin	gs of A	Acaden	nic Cou	ncil				

UNIT I BASICS OF NERVE

9

Development of Nervous system – Neurotrophic Factors, Extracellular Matrix components in Nervous system development – Neuron & Glial cells Structure, Classifications and Functions

 $\label{eq:matter} Myelination-Neurotransmitter; types \& functions-Action\\ potential - Transport of impulse and\\ materials in neurons-NMJ-Neural control of movement-Sensory Feedback Mechanism.$

UNIT II BRAIN, BRAIN STEM AND SPINAL CORD

9

Brain: Lobes - Cortical Areas - Brain Circuits - Memory - Sleep - Brains Stem: Structure and Control areas - Cerebellum - dyslexia. Spinal cord: Structure and Functions. Concepts of Nuclei, Ganglia and tracts - Reticular formation - Plexus formation - Visual, Auditory & Olfactory Pathway. Neurophysiology and neural control of genitourinary function.

UNIT III NEURON TRACING

9

Physiology of Nerve conduction - Visualization of nervous system - Synaptic transmission and cellular signaling of Neurons - Electrical activity of the brain and recording of brain

waves - Cortical mapping - Voltage sensitive dyes - Fluorescent tracing of neural tissue. Synchronization and control of neural activity in-vivo and in-vitro - Spinal neural circuits – Neural cell markers.

UNIT IV NERVE INJURY AND DISORDERS

9

Blood Brain Barrier - Neurological dysfunctions - Neuro degeneration - Demyelination - Neuronal injury - Neural plasticity- Wallerian degeneration - Drugs acting on CNS and their Pharmacokinetics. Alzheimer's, Parkinson's and Prion diseases. Sleep Disorder - Schizophrenia

UNIT V NEURAL ENGINEERING

9

Regeneration of the Nervous system - Axon guidance - Retinal regeneration - Neuron & Neuroglial culture - Nerve graft: Neural Tissue Engineering —Peripheral Nerve Reconstruction - Drug Delivery system in CNS. Cognitive & neurobehavioral rehabilitation.

TOTAL:45 PERIODS

- 1. Mathews G.G. Neurobiology, 2nd Edition, Blackwell Science, UK, 2000.
- 2. Textbook of Neuroanatomy, Malcom Carpenter, Mc.Grawhill Edition.
- 3. Park J.B."Biomaterials Science and Engineering", Plenum Press, 1984.
- 4. W. Mark Saltzman Tissue Engineering Engineering principles for design of replacement organs and tissue Oxford University Press inc New York, 2004.

M	D8073						BIO N	IEMS				L	T	P	C	
			To	otal Co	ntact H	Iours:45	5				,	3	0	0	3	
			Pr	erequis	site: Kı	nowledg	ge in Bi	omems	(B.Teo	ch)						
			Co	ourse D	Designe	d by : I	Bio-Me	dical E	ngineer	ing						
OF	BJECTI	VES	,													
			•		sensor	rs and a	ctuator	s and th	neir prin	nciples	of oper	ration	at th	e micr	О	
		ale le			EMC ir	n differe	nt field	l of mo	diaina							
	• Ap	pnc	atioi	11 O1 IVII		i uiiicic	iii iicio	i oi ille	uicine.							
	URSE				` /											
CC						on of di				rs and	actuato	ors at r	nicro	scale	level	
CC						issues			level							
CC						r any ap	_									
CC)4 <i>P</i>	Appl	ply the concepts to the design of different types of microsystems													
	<u> </u>					ourse O										
		(I	I/M	/L indi	cates st	trength						m, L-L	юw			
1	Con				I	I	Prog	ramme I	Outcor	nes (Po	os)					
2	Cos		01	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1) F	2011	PO12	
	CO1]	Н	Н	M			Н			M				M	
	CO2	_				Н			Н			M		Н		
	CO3			M	M		M	Н	Н		M				M	
3	Catego	_	P	rofessio		Profes	sional	Profe	essional	One	en Elec	tive	_	Projec		
5	Carego	Лу		lathema		Core			ive (PE	1	(OE)			erm Pa		
				(PM)			(- /				(-)			Semina		
													Inte	rnship	(PR)	
4	Appro	val	4	1st - 42	nd Me	eetings	of Acad	lemic C	Council			<u> </u>				

UNIT I MEMS MATERIALS AND FABRICATION 9

3. FD 00=0

Typical MEMs and Microsystems, materials for MEMS - active substrate materials- Silicon and its compounds, Silicon piezoresistors, Gallium Arsenide, quartz, polymers. Micromachining-photolithography, thin film deposition, doping, etching, bulk machining, wafer bonding, LIGA

UNIT II MECHANICAL AND THERMAL SENSORS AND ACTUATORS 9

Mechanics for MEMs design- static bending of thin plates, mechanical vibration, thermomechanics, fracture and thin film mechanics. Mechanical sensors and actuators – beam and cantilever – microplates, strain, pressure and flow measurements, Thermal sensors and actuators- actuator based on thermal expansion, thermal couples, thermal resistor, Shape memory alloys- Inertia sensor, flow sensor

UNIT III ELECTROSTATIC AND PIEZOELECTRIC SENSORS AND ACTUATORS 9

Parallel plate capacitor, pull in effect, Electrostatic sensors and actuators- Inertia sensor, Pressure sensor, flow sensor, tactile sensor, comb drive. Properties of piezoelectric materials, Piezoelectric sensor and actuator – inchworm motor, inertia sensor, flow sensor. Case study: Design of electrostatic actuator

UNIT IV MICROFLUIDIC SYSTEMS

Q

Fluid dynamics, continuity equation, momentum equation, equation of motion, laminar flow in circular conduits, fluid flow in microconduits, in submicrometer and nanoscale. Microscale fluid, expression for liquid flow in a channel, fluid actuation methods, dielectrophoresis, microfluid dispenser, microneedle, micropumps-continuous flow system, micromixers, Case study: Design of electrophoreticmicrocapillary network system.

APPLICATIONS OF MEMS IN

UNIT V MEDICINE

9

CAD for MEMs, Biological MEMS materials, polymer

based gas sensor, micro total analysis systems (MicroTAS) detection and measurement methods, microsystem approaches to polymerase chain reaction (PCR),DNA sensor, Drug delivery- Types of reservoirs, Case study: Design of BP sensor.

TOTAL: 45 PERIODS

- 1. Chang Liu,' Foundations of MEMS', Pearson Education International, New Jersey, USA, 2006
- 2. NitaigourPremchandMahalik, "MEMS", Tata McGraw Hill Publishing Company, New Delhi. 2007
- 3. Tai Ran Hsu, "MEMS and Microsystems design and manufacture", Tata McGraw Hill Publishing Company, New Delhi, 2002
- 4. Wanjun Wang, Stephen A.Soper, "BioMEMs: Technologies and applications", CRC Press, New York, 2007
- 5. Marc J. Madou 'Fundamentals of Microfabrication: the science of miniaturization', CRC Press, 2002
- 6. NadimMaluf, Kirt Williams. "An introduction to Microelectromechancial Systems Engineering", Second Edition, Artech House Inc, MA, 2004
- 7. Ellis Meng, "Biomedical Microsystems", CRC Press, Boca Raton, FL, 2011.
- 8. Victor.C.Yang, That.T.Ngo."Biosensors and their applications", Springer, 2006.

MD8074	COMPUTER BASED MEDICAL	L	T	P	C
	INSTRUMENTATION				
	Total Contact Hours:45	3	0	0	3
	Prerequisite: Knowledge in medical instrumentation (B.7	Tech/B.I	Ξ)		
	Course Designed by : Electronic				

OBJECTIVES

- To teach PC hardware and its related interfacing
- To give a complete overview of 80186, 80286, 80386 and 80486 microprocessors.
- To understand the basics of computerized data acquisition and programming.
- To enrich the students knowledge with biometrics and network security.

COURSE OUTCOMES (COs)

CO1	Exposed to PC hardware as well as various microprocessor family Hardware behind
	data acquisition
CO2	Scope of virtual reality in health care
CO3	Develop an insight knowledge about the biometrics and network security

Mapping of Course Outcomes with Program outcomes (POs) (H/M/L indicates strength of correlation) H-High, M-Medium, L-Low

	1	Co					Prog	ramme	Outco	mes (Po	os)			
		S												
	2		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
		CO1	M		M			Н			M			Н
		CO2				Н			M			M		
		CO3		M			M	Н		Н	M			
1														

3	Category	Professional	Professional	Professional	Open Elective	Project/
		Mathematics	Core (PC)	Elective (PE)	(OE)	Term Paper
		(PM)				Seminar/
						Internship (PR)
4	Approval	41st - 42nd N	Meetings of Acade	emic Council		

UNIT I PC HARDWARE AND OVERVIEW

9

System Unit - Overview of Mother Boards - Processors, Memory, Adapter cards, Ports, Power supply - BIOS – DOS interaction, POST, Functional and Architecture Block diagram of a PC, Mother Board logics - Memory and I/O map

UNIT II PROCESSORS AND MEMORY

q

80X86 Processors - Architectures and Memory management - Overview of 80X86 based Mother boards

UNIT III PERIPHERAL INTERFACING AND CONTROLLERS

g

Keyboard and Mouse Interfaces - Memory types - RAM - SDRAM and RDRAM, Cache

memory, ROM and its types, Flash memory, CMOS semiconductor memory - Adapter Cards - Sound Card, Modem card, Video card, Network Card - I/O slots - ISA, PCI and AGP bus slots - Ports - Serial and Parallel ports, USB, FireWire port, MIDI, SCSI, IrDA, Bluetooth - Connectors - System Bus, ISA, EISA, PCI, AGP and PCI bus - Disk controllers

COMPUTERISED DATA ACQUISITION AND

UNIT IV PROGRAMMING

9

Plug-in-

data acquisition and Control Boards, - Data acquisition using GPIB and Serial Interfaces and Programming in C - DSP in Medical applications

UNIT V CAD IN MEDCAL INSTRUMENTATION

9

FPGA Design Logics - Virtual Bio- Instrumentation in LABview - Multisim Simulation with bio-amplifiers - Mixed signal SoC applications in biomedical applications

TOTAL: 45 PERIODS

- 1. RamachandraLele, Computers in Medicine Progress in Medical Informatics, Tata McGraw Hill Publishing Company, New Delhi, 2005
- 2. N.Mathivanan, PC Based Instrumentation: Concepts and Practice, Prentice Hall of India, New Delhi 2007.
- 3. B.Govindarajalu, IBM PC and Clones: Hardware, Trouble shooting and Maintenance, Tata McGraw Hill Publishing Company, New Delhi, 2005
- 4. Herbert Schildt, The Complete Reference JAVA, Tata McGraw Hill Publishing Company, New Delhi, 2005
- 5. John P Woodward, Biometrics The Ultimate Reference, Dreamtech Publishers, New Delhi, 2003
- 6. Ranjan Parekh, Principles of Multimedia, Tata McGraw Hill Publishing Company, New Delhi, 2006
- 7. Stephen J Bigelow, Trouble shooting, Maintaining and Repairing of PCs, Tata McGraw Hill Publishing Company, New Delhi, 2005
- 8. H M Dietel, Internet and World Wide Web, AB Goldberg publishers, New Delhi, 2007
- 9. AtulKhate, Cryptography and network security, Tata McGraw Hill Publishing Company, New Delhi, 2008

MD807	5				I	MEDIC	CAL E	THICS	AND	STANI	DARE	S	L	T	P	С
				To	otal Co	ntact H	ours: 4	5					3	0	0	3
				Pr	erequis	ite: Kn	owledg	ge in Pro	ofessio	nal ethi	cs (B.	Tech/B.	E)	1		
				Co	ourse D	esigne	d by : E	Bio-Med	dical E	ngineer	ing					
OBJEC	ΤI	VES		<u> </u>												
• .	Ac	hieve	fam	iliar	ity wit	h some	basic e	ethical f	ramew	ork& u	nderst	and how	V			
			ical	fra	mewoi	ks can	help ı	us to th	nink th	rough	conter	nporary	ques	tion	s in me	edical
		ics.														
								he legal		-	-					
								th care follow				wledge				
COURS							at to be	HOHOW	eu III II	ospitais	<u> </u>					
CO1							e coure	e the ct	udent s	hould l	e able	to dem	onetre	ate a	measu	rahle
COI								cills and					OHSU	iic a	measu	laule
CO2							_	nes for								
CO3		Pı	ıblic	e du	ties and	d conse	ent									
CO4		G	uide	line	es to ob	tain me	edical s	tandard	s in ho	spitals.						
				Mai	pping c	of Cour	se Outo	comes v	vith Pro	ogram	outcoi	nes (PC	s)			
		(ledium,		W		
1							_	Progra	mme C	outcom	es (PC	s)				
		COs	PC	D 1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1	0	PO11	PO12
2	1 L	CO1	I	Н		Н			Н			M				
	I -	CO2						M								L
	I ⊩	CO3	N	M		M										
	L	CO4			L								L			
3	C	Categoi	rv	P	rofessi	onal	Profes	ssional	Profe	essional	Ot	en Elec	tive		Projec	t/
			,	M.	lathem	atics	Core	(PC)	Elect	ive (PE	_	(OE)		T	erm Pa	
					(PM))				,					Semina	-
														Int	ernship	(PR)
						Ţ										

UNIT I INTRODUCTION TO MEDICAL ETHICS

4

Approval

8

Definition Medical ethics, Scope of ethics in medicine, American medical Association code of of ethics, CMA code of ethics- Fundamental Responsibilities, The Doctor And The Patient, The Doctor And The Profession, Professional Independence, The Doctor And Society.

UNIT II ETHICAL THEORIES & MORAL PRINCIPLES

41st - 42nd Meetings of Academic Council

9

Theories-Deontology & Utilitarianism , Casuist theory, Virtue theory, The Right Theory. Principles-Non-Maleficence, Beneficence, Autonomy, Veracity, Justice. Autonomy & Confidentiality issues in medical practice, Ethical Issues in biomedical research , Bioethical issues in Human Genetics & Reproductive Medicine.

UNIT III HOSPITAL ACCREDITATION STANDRADS

9

Accrediation- JCI Accreditation & its Policies. Patient centered standards, Healthcare Organization management standards.

HOSPITAL SAFETY STANDARDS

10

Life Safety Standards- Protecting Occupants, Protecting the Hospital From Fire, Smoke, and Heat,

Protecting Individuals From Fire and Smoke, Providing and Maintaining Fire Alarm Systems, Systems for Extinguishing Fires Environment of Care Standards-Minimizing EC Risks, Smoking Prohibitions, Managing Hazardous Material and Waste, Maintaining Fire Safety Equipment, Features, Testing, Maintaining, and Inspecting Medical Equipment.

UNIT V MEDICAL EQUIPMENT SAFETY STANDARDS

9

General requirements for basic safety & essential performance of medical equipments.IEC 60601 standards- Base Standard-general requirement of electrical medical devices, Collateral Standards-EMC radiation protection &programmable medical device system, Particular Standards-type of medical device

TOTAL:45 PERIODS

- 1. Domiel A Vallero "Biomedical Ethics for Engineers", Elsevier Pub. 1st edition, 2007
- 2. Biomedical Ethics: A Canadian Focus. Johnna Fisher (ed.), Oxford University Press Canada (2009)
- 3. Robert M Veatch" Basics of Bio Ethics", Second Edition. Prentice- Hall, Inc 2003
- 4. Physical Environment Online: A Guide to The Joint Commission's Safety Standards is published by HCPro, Inc. 2010
- 5. Joint Commission Accreditation Standards for Hospitals ,2 nd edition 2003
 6. Bioethics-"An Introduction for the biosciences", 2nd edition 2008, Ben Mepham, Oxford.

MD8076	MEDICAL OPTICS	L	T	P	C
	Total Contact Hours:45	3	0	0	3
	Prerequisite: Knowledge in medical physics			<u>.1</u>	
	Course Designed by : Bio-Medical Engineering				
ODIECELLEC	1				

OBJECTIVES

• The objectives of this course are to: (i) provide a possibility for the student to acquire knowledge about the physical properties of light and its impact and interaction with biological tissue in terms of optical properties, instrumentation in photonics, through the use and design of appropriate optical components; (ii) understand the engineering and practical applications of optics related to diagnostics, sensing and therapeutics of the human body

COURSE OUTCOMES (COs)

CO1 Able to know the various optical properties of tissue as well as application of lasers in medical fields

Mapping of Course Outcomes with Program outcomes (POs) (H/M/L indicates strength of correlation) H-High, M-Medium, L-Low

				Programme Outcomes (Pos)									
	Cos												
		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
C	O1	Н	Н	M			Н			M			M
		egory Professional Mathematics (PM)				rofessic Core (P		Profes Electiv (PE)			n Electiv (OE)	Terr Ser Inte	oject/ m Paper minar/ ernship PR)
4	App	oroval	41st	- 42nd	Meetir	ngs of A	Academ	nic Cou	ncil				

UNIT I OPTICAL PROPERTIES OF THE TISSUES

9

Refraction, Scattering, absorption, light transport inside the tissue, tissue properties, Light interaction with tissues, opto-thermal interaction, fluorescence.

UNIT II INSTRUMENTATION IN PHOTONICS

9

Instrumentation for absorption, scattering and emission measurements, excitation light sources – high pressure arc lamp, solid state LEDs, Lasers, optical filters, solid state detectors - optical detectors - time resolved and phase resolved detectors.

UNIT III SURGICAL APPLICATIONS OF LASERS

9

Laser in tissue welding, lasers in dermatology, lasers in ophthalmology, otolaryngology, urology.

UNIT IV DIAGNOSTIC APPLICATIONS

9

Optical coherence tomography, Elastography, Fluorescence Imaging, Raman Imaging, FLIM.

UNIT V THERAPEUTIC APLLICATIONS

q

Phototherapy, Photodynamic therapy (PDT) - Principle and mechanism - Oncological and

 $non-oncological\ applications\ of\ PDT\ -\ Biostimulation\ effect-applications.$

TOTAL: 45 PERIODS

TEXT BOOKS:

- 1. MarkolfH.Niemz, "Laser-Tissue Interaction Fundamentals and Applications", Springer, 2007.
- 2. Paras N. Prasad, "Introduction to Biophotonics", A. John Wiley and sons, Inc. Publications, 2003.

REFERENCES:

- 1. Tuan VoDinh, "Biomedical photonics Handbook", CRC Press LLC, 2003.
- 2. Mark E. Brezinski, "Optical Coherence Tomography: Principles and Applications", Academic Press, 2006.
- 3. R. Splinter and B.A. Hooper, "An Introduction to BioMedical Optics", Taylor and Francis, 2007.

.

MI	D8077	7		NA	NOM		NE PR LICAT	INCIP IONS	LES A	ND		L	T	P	С
		Tot	tal Cont	tact Ho	urs:45							3	0	0	3
		Pre	requisi	te: Kno	wledge	e in tiss	ue eng	ineering	g S		<u> </u>			l .	
		Co	urse De	esigned	by: Bi	io-Med	lical En	gineeri	ng						
OF	BJECT	TIVES													
	•]	o kno	w basic	nanote	echnolo	ogical p	orincipl	es and	charact	erizatio	n metho	ods			
											ology tl	hat a	are c	onve	rging
						anotecl	nnology	y and na	anomed	icine.					
CC	DURS	E OU	ГСОМІ	ES (CC	Os)										
CC	D 1		student will be able to follow the newest findings in the area of Nano medicine												
		and in	l implement the perspectives in own research												
											s (POs)				
		(H	/M/L ir	ndicates	s streng						lium, L-	Lov	V		
	.					Prog	ramme	Outco	mes (Po	os)	1			T	
C	os	DO 1	DO2	DO2	DO 4	DOS	DOC	DO7	DOO	DOO	DO10	D/	211	DO	10
	01	PO1	PO2		PO4	PO5	PO6	PO7	PO8	PO9	PO10	P	O11	PO	12
H	O1 Coto	M	L	H essiona	L	M rofessio	M M	M Profes	oio mol	On a	Dla stir	<u> </u>	D.		. /
3	Cate	gory		essiona ematic		Core (P		Electi			n Electiv (OE)	/e		oject n Pa _l	
				PM)		2016 (F	C)	(PE)	ve		(OL)			n r a _l mina	
			(1	1 1 1 1 1				(1 L)						ernsh	
														PR)	-1
									V					/	
4	Appr	oval	41st -	- 42nd	Meetir	ngs of A	Acaden	nic Cou	ncil						

UNIT I INTRODUCTION OF NANOPARTICLES

9

Overview of nanotechnology from medical perceptive, different types of nanobiomaterials and nanostructure interactions. Synthesis, characterization, and properties smart nanomaterials, Surface modification ,biofunctionalization of nanomaterials. Nanocarriers(e.g. liposomes, polymer capsules, polymer nanoparticles, porous materials, nanogels, dendrimers, microemulsions, inorganic nanoparticles, carbon nanotubes, lipoproteins, solid lipid nanoparticles).

UNIT PROTEIN AS II NANOSTRUCTURES

9

Protein based nanostructures building blocks and templates – Proteins as transducers and amplifiers – nanobioelectronic devices and polymer nanocontainers – microbial production of inorganic nanoparticles – magnetosomes.

UNIT III DNA AS NANOSTRUCTURES

9

DNA based nanostructures – Topographic and Electrostatic properties of DNA – Hybrid conjugates of gold nanoparticles – DNA oligomers – use of DNA molecules in nanomechanics .

UNIT IV NANOPARTICLES IN DIAGNOSIS

9

Introduction to nanoparticles in diagnostics—nuclear imaging, optical imaging, PET, Micro PET, cardio vascular disease studies, imaging and therapy of thrombosis, emerging Ethical issues and

toxicology nanomaterial

of s

UNIT V NANOTHERAPEUTICS

9

Nanoparticle drug delivery- design, manufacture physiochemical properties, as carriers in and properties, barriers, nanotechnology in Cancer therapy, lung infectious transport across biological disease, bone treatment, nano particles for oral vaccination and skin disease.

TOTAL: 45 PERIODS

- 1. Nanobiotechnology Concepts, Applications and Perspectives 2004. Edited by CM, Niemeyer , C.A. Mirkin. Wiley VCH.
- 2. Nanoparticle Assemblies and Superstructures. By Nicholas A. Kotov. 2006 CRC.
- 3. Nano: The Essentials: T. Pradeep. McGraw Hill education 2007.
- 4. Nanofabrication towards Biomedical Applications, Techniques, Tools, Applications and Impact. 2005 By Challa, S.S.R. Kumar, Josef Hormes, CarolaLeuschaer. Wiley VCH.

PATTERN RECOGNITION TECHNIQUES AND	L	T	P	C
APPLICATIONS				
Total Contact Hours:45	3	0	0	3
Prerequisite: basic knowledge on neural network			1	•
Course Designed by : Biomedical Engineering				
	APPLICATIONS Total Contact Hours:45 Prerequisite: basic knowledge on neural network	APPLICATIONS Total Contact Hours:45 Prerequisite: basic knowledge on neural network 3	APPLICATIONS Total Contact Hours:45 Prerequisite: basic knowledge on neural network 3 0	APPLICATIONS Total Contact Hours:45 Prerequisite: basic knowledge on neural network 3 0 0 President Hours:45

OBJECTIVES

COURSE OUTCOMES (COs)

- The objective of this course is to enable the students to understand the fundamentals of Pattern recognition.
- The students should learn to choose an appropriate feature, pattern classification algorithm for a pattern recognition problem, properly implement the algorithm.
- To enrich the students knowledge with fuzzy systems and its applications

	` '
CO1	Develop an idea about the fundamentals of Pattern recognition. Acquire the
	knowledge of fuzzy systems & its applications.
CO2	Recent advancements in life science & technology using Fuzzy techniques
CO3	Develop an idea about the fundamentals of Pattern recognition. Acquire the

knowledge of fuzzy systems & its applications.

Mapping of Course Outcomes with Program outcomes (POs)

(H/M/L indicates strength of correlation) H-High, M-Medium, L-Low

						Prog	ramme	Outco	mes (Po	os)			
C	os												
		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
C	01	M		M			Н			M			Н
C	O2				Н			M			M		
C	O3		M			M	Н		Н	M			

3	Category	Professional	Professional	Professional	Open Elective	Project/
		Mathematics	Core (PC)	Elective	(OE)	Term Paper
		(PM)		(PE)		Seminar/
						Internship
						(PR)
				V		
4	Approval	41st - 42nd M	leetings of Acader	nic Council		

UNIT I OVERVIEW OF PATTERN RECOGNITION

q

Discriminant functions- Supervised learning - Parametric estimation-Maximum Likelihood estimation - Bayesian parameter estimation - Problems with Bayes Approach. Non Parametric techniques, Perceptron Algorithm-LMSE Algorithm- -Pattern classification by distance functions - minimum distance Pattern classifier.

UNIT II UNSUPERVISED CLASSIFICATION

9

Clustering for unsupervised learning and classification, clustering concepts hierarchical clustering, Partitional clustering, k- means algorithm - Validity of clustering solutions.

UNIT III FEATURE EXTRACTION AND STRUCTURAL PATTERN RECOGNITION

9

KL Transforms - feature selection through functional approximation - Binary selection

Elements of formal grammars, syntactic description, stochastic grammars, Structural representation.

UNIT IV FUZZY SYSTEMS

9

Fuzzy sets and fuzzy reasoning- fuzzy matrices-fuzzy functions-decomposition – Fuzzy inference systems Mamdani and Sugeno model, Fuzzy clustering- fuzzy c- means algorithm-fuzzy control method- fuzzy decision making.

UNIT V RECENT ADVANCES AND APPLICATIONS

9

Principle of neuro fuzzy techniques, Application of PR in image segmentation – CAD system in Breast cancer detection, ECG signal analysis, Fingerprint identification - Cell cytology classification

TOTAL: 45 PERIODS

- 1. Duda R.O., and Hart P.G., Pattern Classification and scene analysis, JohnWiley, New York, 1973.
- 2. Earl Gose, Richard Johnsonbaugh, Steve Jost, Pattern Recognition and Image analysis, Prentice Hall of India, New Delhi 2007.
- 3. Robert J. Schalkoff , Pattern recognition: Statistical, Structural and Neural approaches, John Wiley and Sonslnc, New York, 1992.
- 4. Morton Nadier and Eric Smith P., Pattern Recognition Engineering, John Wiley and sons, New York, 1993.
- 5. Andrew Webb, Statistical Pattern Recognition, Arnold publishers, London, 1999.
- 6. Donna L. Hudson, Maunee E. Cohan, Neural Networks & Artificial Intelligence for Biomedical Engineering, Prentice Hall of India, New Delhi 2001.
- 7. Timothy Ross, Fuzzy Logic with Engineering applications,2nd Edition John Wiley and sons, West Sussex,2004.

MD8079	PHYSIOLOGICAL MODELLING	L	T	P	C
	Total Contact Hours:45	3	0	0	3
	Prerequisite: knowledge on physiology control system (B.Tech/	B.E)		
	Course Designed by : Management				

OBJECTIVES

- To understand the fundamental engineering aspects of modelling Physiological
- To utilize concepts derived from biomedical research to aid in the design of engineering systems.
- To apply system techniques and methods to biomedical problems.

COURSE OUTCOMES (COs)

Provides an insight into and understanding of the utilization of models, system analysis and analog simulation in the field of bioengineering.

Mapping of Course Outcomes with Program outcomes (POs) (H/M/L indicates strength of correlation) H-High, M-Medium, L-Low

		Programme Outcomes (Pos)											
Cos													
		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
C	O1	M		M			Н						Н
3			Math	Professional Pro			onal Professional Elective (PE)				n Elective (OE)	Term Sen Inte	oject/ n Paper ninar/ rnship PR)
4	App	roval	41st -	- 42nd	Meetin	gs of A	Academ	nic Cou	ncil	•		•	

UNIT I INTRODUCTION TO SYSTEM CONCEPTS

9

The Model and Analog, System Properties – Resistance and Storage, Concept of Energy Storage and Dissipation in physiological systems, Thermal System with Combined System properties, Step response of a Resistance/Compliant Systems, pulse response of a first order system.

UNIT II TRANSFER FUNCTION

9

System as an Operator, Transfer Function of First and Second Order system, Transfer Function and Concept of Impedance – Circuits into transfer function, Circuit Analog from transfer function.

UNIT III SYSTEM RESPONSE CHARACTERISTICS

9

Characteristics of Physiological System, Sinusoidal Analysis of Instrumentation System, Frequency Response Characteristics – Semicircular Canals, Visual Tracking System, Evaluation of Transfer Function from Frequency Response, Transient Response Characteristics – Transient input functions, Under-damped Response of physiological system – example - post synaptic aortic arch.

UNIT IV FEEDBACK

9

Feedback and Homeostasis, Review of system stability concepts, Hypophysis - Adrenal

UNIT V SIMULATION OF BIOLOGICAL SYSTEMS

Introduction to Simulation, Simulation of Respiratory mechanics, Cardiovascular Control System, Skeletal muscle servo mechanism, Oculomotor System, Hodgkin Huxley Model.

TOTAL: 45 PERIODS

REFERENCES

- 1. William B. Blesser, A System Approach to Biomedicine, McGraw Hill Book Co, New York, 1969.
- 2. ManfreoClynes and John H. Milsum, Biomedical Engineering System, McGraw Hill and Co, New York, 1970.
- 3. Michael C.K. Khoo, "Physiological Control System" Analysis, Simulation and Estimation"-Prentice Hall of India, New Delhi, 2001
- 4. Douglas S. Rigg, Control Theory and Physiological Feedback Mechanism, The William and
 - Wilkins Co, Baltimore, 1970
- 5. Richard Skalak and ShuChien, Hand Book of Biomedical Engineering, McGraw Hill and Co, New York, 1987.

Q

MD80	80		PRI	NCIPI	LES OF	F GEN	ETIC A	ANAL	YSIS	L	Т	P	C		
		Total	Contac	ct Hour	rs:45					3	0	0	3		
		Prere	Prerequisite: basic knowledge on genetic (B.Tech/B.E)												
		Cour	se Desi	gned by	y : Bior	medica	l Engin	eering							
OBJE	CTIV	ES													
COU	funda Stude demo	pletion of the pletio	orinciple develo ow gen	es of g op skil etic and	enetics ls to a	and to	descri these p	be the rincipl	experin	nents us solve ge	ed to es enetic p	tablis	sh th		
CO1					of inher	ritance	pattern	s and ic	lentify	them in	genetic	data			
CO2	Interpret different forms of inheritance patterns and identify them in genetic data Interpret and critically evaluate the outcomes of statistical analysis associated with the research project														
CO3 CO4	A	cquire in			_					tic seque					
		with mi	nimal s	Supervis Course	sion e Outco	omes w	ith Prog	gram o	utcome	molecul		tic da	ıta		
		11/101/12/11	ilaicates	streng			Outco			ilulii, L-	LOW				
Cos	РО	1 PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	РО	12		
CO1	M	_	M			Н			M			I	Н		
CO2		M		Н	M	Н	M	Н	M	M					
CO3	L	IVI			IVI	П		П	IVI	L					
3 Category		Math	essiona nematic PM)		Professional Core (PC)			essional Open Elective (OE)			lective Project/				
1 1 1	nrovo	// 104	12nd	Meatir	age of A	\ cadar	nic Com	ncil		√ 					
4 Ap	prova	41St	41st - 42nd Meetings of Academic Council												

UNIT I GENETIC INHERITANCE

9

Organisation of DNA, Chromosomal inheritance, Eukaryotic genomes – repetitive and non repetitive sequence, Genetic mapping - restriction cleavage ,RFLP and SNPs.

UNIT II DNA AND PHENOTYPE

9

DNA structure and replication, DNA sequencing, amplification and hybridisation. DNA Polymorphism, RNA transcription and processing, translation and its post translation modification. Regulation of gene expression.

Gene isolation and manipulation, mutations, repair and recombination, site directed mutagenesis,

in vivo techniques of genetic manipulation, tools for analysing

gene expression and genetically

organisms.

modifie

d

UNIT

IV **HUMAN GENOME PROJECT**

9

Human Genome Project (HGP) – an overview of the project, goals of the project, major scientific strategies & approaches used in HGP, physical mapping, gene ontology, gene annotation,

techniques in HGP – microsatellite markers, STS, EST, DNA sequencing and microarray **DNA**

scientific& medical benefits of this project.

IMPACT OF GENETIC VARIATION

9

Population Genetics, Quantitative Genetics, Evolution Genetics.

TOTAL: 45 PERIODS

- 1. Watson. J. etal, "Molecular Biology of the Gene", 5th Edition, Pearson Publication,
- 2. Griffiths, Wesslers, Lewontin, Bart Gel, Suzuki, Miller "Introduction to Genetics Analysis", W.H Freeman & company, New York 8th Edition 2005.
- Recombinant DNA" 3rd Edition ASM Press, 2003
 Karp, Gerald." Cell and Molecular Biology". Concepts and Experiments, 4th Edition, John Wiley Sons, 2005.
- Weaver. R.F. "Molecular Biology "3rd Edition, McGraw Hill, 2005.
 Tom Strachan, Andrew P Read "Human molecular Genetics" 3rd Edition, Garland Publishing -2004.

M	D8081		TELEHEALTH TECHNOLOGY											T	P	C
			Total Contact Hours:45 3										3	0	0	3
			Pro	Prerequisite: basic knowledge on healthcare												
			Сс	Course Designed by : Biomedical Engineering												
OF	BJECTI	VES														
				e key p	rinciple	es for t	elemed	icine a	nd heal	th.						
				he stud		ith the	knowle	dge of	teleme	dica	al st	andards	s, mob	ile t	elemed	dicine
CC	URSE	OU	ГСО	MES ((COs)											
CC)1	Tec	hnol	ogies a	pplied	in mult	imedia	using t	telemed	dicir	ne					
CC)2	Prot	ocol	ls behir	nd encry	yption	techniq	ues for	secure	tra	nsm	ission (of data			
CC)3	. Ap	_				n health									
		(H					utcome of corre							ow		
1	Co								Outco				,			
	S	P	O1	PO2	PO3	PO4	PO5	PO6	PO7	PC	8(PO9	PO10)]	PO11	PO12
2	CO1	. 1	M		M			Н				M				Н
	CO2	2				Н			M				M			
	CO3	3		M			M	Н		Н	I	M				
3	Catego	orv	P	rofessi	onal	Profes	sional	Profe	essiona	1	One	en Elec	tive		Projec	t/
				(PM)	atics	Core (PC)		Elective (PE)		(OE)			Term Paper Seminar/ Internship (PR)			
												$\sqrt{}$				
4	Appro	val	41	st - 42	nd Me	etings	of Acad	lemic C	Council							

UNIT I TELEMEDICINE AND HEALTH

9

History and Evolution of telemedicine, Functional diagram of telemedicine system, Telemedicine, Tele health, Tele care, Organs of telemedicine, Global and Indian scenario, Ethical and legal aspects of Telemedicine - Confidentiality, Social and legal issues, Safety and regulatory issues, Advances in Telemedicine

TELEMEDICAL TECHNOLOGY

UNIT II

9

Principles of Multimedia - Text, Audio, Video, Data communications and networks, data, PSTN,

POTS, ANT, ISDN, Internet, Air/ wireless communications: GSM satellite, and Micro wave, Modulation techniques, Types of Antenna, Integration and operational issues, Communication infrastructure for telemedicine – LAN and WAN technology. Satellite communication. Mobile hand held devices and mobile communication. Internet technology and telemedicine using world wide web (www). Video and audio conferencing. Clinical data –local and centralized.

Data Security and Standards: Encryption, Cryptography, Mechanisms of encryption, phases of Encryption. Protocols: TCP/IP, ISO-OSI, Standards to followed DICOM, HL7, H. 320 series (Video phone based ISBN) T. 120, H.324 (Video phone based PSTN), Video Conferencing, Real-timeTelemedicine integrating doctors / Hospitals, Clinical laboratory data, Radiological data, and other clinically significant biomedical data, Administration of centralized medical data, security and confidentially of medical records and access control, Cyber laws related to telemedicine.

UNIT IV MOBILE TELEMEDICINE

9

Tele radiology: Definition, Basic parts of teleradiology system: Image Acquisition system Display system, Tele pathology, multimedia databases, color images of sufficient resolution, Dynamic range, spatial resolution, compression methods, Interactive control of color, Medical information storage and management for telemedicine- patient information medical history, test reports, medical images diagnosis and treatment. Hospital information system - Doctors, paramedics, facilities available.Pharmaceutical information system.

UNIT V TELEMEDICAL APPLICATIONS

9

Telemedicine access to health care services – health education and self care. · Introduction to robotics surgery, telesurgery.

Telecardiology, Electronic Documentation, e-health services Teleoncology, Telemedicine in neurosciences, security and interoperability., Telemedicine access

to health care services – health education and self care, Business aspects - Project planning and costing, Usage of telemedicine.

TOTAL:45 PERIODS

- 1. Norris, A.C. Essentials of Telemedicine and Telecare. Wiley (ISBN 0-471-53151-0), 2002
- 2. Wootton, R., Craig, J., Patterson, V. (Eds.), Introduction to Telemedicine. Royal Society of Medicine Press Ltd (ISBN 1853156779), 2006
- 3. O'Carroll, P.W., Yasnoff, W.A., Ward, E., Ripp, L.H., Martin, E.L. (Eds), Public Health Informatics and Information Systems. Springer (ISBN 0-387-95474-0), 2003
- 4. Ferrer-Roca, O., Sosa-Iudicissa, M. (editors), Handbook of Telemedicine. IOS Press (Studies in Health Technology and Informatics, Volume 54). (ISBN 90-5199-413-3), 2002.
- 5. Simpson, W. 2006. Video over IP. A practical guide to technology and applications. Focal Press (Elsevier). ISBN-10: 0-240-80557-7
- 6. Bemmel, J.H. van, Musen, M.A. (Eds.) (1997). Handbook of Medical Informatics. Heidelberg, Germany: Springer. (ISBN 3-540-63351-0)