BHARATH INSTITUTE OF HIGHER EDUCATION AND RESEARCH DEPARTMENT OF BIOMEDICAL ENGINEERING CURRICULUM AND SYLLABUS

(R2018)

CHOICE BASED CREDIT SYSTEM (Applicable to the batches admitted from July 2018) M.Tech - BIOMEDICAL ENGINEERING-R2018

DEPARTMENT VISION

To create highly motivated, technologically competent engineers, be a benchmark and trend setter in Biomedical Engineering by imparting quality education with interwoven input from academic institutions, research organizations and industries to improve healthcare delivery to human in association with physicians and surgeons

MISSION STATEMENTS

MS1: Providing good academic ambience by adopting best teaching and learning practices through flexible student centric curriculum evolved continuously for student of BME with diverse backgrounds.

MS2: Providing congenial ambience both for faculty members and students in inculcating critical thinking with a quest for creativity, innovation, research and development activities.

MS3: Enhancing collaborative activities with academia, research institutions and industries by nurturing ethical entrepreneurship and leadership qualities.

MS4: Nurturing continuous learning in the state-of-the art technologies and global outreach programmes resulting in competent world-class biomedical engineers

PROGRAMME EDUCATIONAL OBJECTIVES (PEOs):

PEO1: PREPARATION:

To provide students with sound fundamental in Mathematical, Scientific and Engineering fundamentals necessary to formulate, analyse, and comprehend the fundamental concepts in Bio Medical Engineering.

PEO2: CORE COMPETENCE:

To apply critical reasoning, quantitative, qualitative, designing and programming skills, to identify, solve problems and to analyze the experimental evaluations, and finally making appropriate decisions, and to enhance the techniques in the field of biomedical Engineering.

PEO3: PROFESSIONALISM:

To broaden knowledge to establish themselves as creative practicing professionals, locally and globally, in fields such as design, research, testing and manufacturing of Medical Electronics and Instrumentation Systems

PEO4: SKILL:

To provide regional Industry based training for developing professional skills and soft skills such as proficiency in languages, technical communication, verbal, logical, analytical, comprehension, team building, inter personal relationship, group discussion and leadership skill to become a better professional.

PEO5: ETHICS:

To apply the ethical and social aspects of modern Engineering and Technology innovations to the design, development, and usage of new products, machines, gadgets, devices, etc.

PROGRAMME OUTCOMES (POs)

On completion of M.Tech in Biomedical Engineering Programme, Graduates will have ability to

PO1: Engineering Knowledge: Apply the knowledge of science and engineering to solve complex health related problems.

PO2: Problem Analysis: Analyze the data in various domains and learn the features for possible predictions in health condition.

PO3: Design/Development of Solutions: Design and develop healthcare-instruments using modern and innovative engineering technologies.

PO4: Conduct Investigations of Complex Problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions for complex problems.

PO5: Modern Tool Usage: Use the techniques, skills, and modern engineering tools necessary for biomedical engineering practice.

PO6: The Engineer and Society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the biomedical engineering practice.

PO7: Environment and Sustainability: Developing professional competency in healthcare sector and leadership qualities with a harmonious blend of ethics leading to an integrated personality development

PO8: Ethics: Evaluate the impact of their work on society, including ethical, economic, global and environmental aspects.

PO9: Individual and Team Work: Function effectively as an individual, and as a member or work in multidisciplinary team.

PO10: Communication: Communicate effectively orally and in writing scientific concepts and ideas.

PO11: Life-long Learning: Have life-long learning skills and are able to apply their engineering knowledge to critically evaluate relevant literature and new technologies or systems.

PO12: Project Management and Finance: Practice intellectual integrity, ethical research, and become capable of fabricating functional prototypes leading to patenting and technology transfer and leader in a team, to manage projects and in multidisciplinary environments

PROGRAM SPECIFIC OUTCOME (PSO):

Biomedical Engineering Graduates will be able to PSO 1: Work in research field by applying skills and knowledge towards the advancement of health care technology

PSO 2: Work with health care professional and to develop medical equipment's in order to solve the clinical problems.

M.Tech – BIOMEDICAL ENGINEERING

(FULL TIME)

I – IV SEMESTERS

			SEMESTER I					
Sl. No.	Course Code	Category	Course Title	Contact Period	L	Т	Р	С
			THEORY					
1	P18PCBM101	PC	Anatomy and Physiology	3	3	0	0	3
2	P18PCBM102	PC	Advance In Biomedical Instrumentation	3	3	0	0	3
3		PE	Professional Elective I	3	3	0	0	3
4		PE	Professional Elective II	3	3	0	0	3
5	P18PRBM101	PR	Bio-Research Methodology and IPR	2	2	0	0	2
6		AC	Audit Course I	2	2	0	0	0
			PRACTICAL					
7	P18PCBM1L1	PC I	Bio medical Instrumentation lab	4	0	0	4	2
8	P18PCBM1L2	PC A	Anatomy And Physiology Lab	4	0	0	4	2
	·]	24	16	0	8	18	

			SEMESTER II					
Sl. No.	Course Code	Category	Course Title	Contact Period	L	Т	Р	С
			THEORY					
1	P18PCBM201	PC	Medical Image Analysis	3	3	0	0	3
2	P18PCBM202	PC	Biomedical Signal Analysis	3	3	0	0	3
3		PE	Professional Elective III	3	3	0	0	3
4		PE	Professional Elective IV	3	3	0	0	3
5		AC	Audit II	2	2	0	0	0
			PRACTICAL					
6	P18PCBM2L1	PC I	Medical Image analysis lab	4	0	0	4	2
7	P18PCBM2L2	PC I	Biomedical signal Analysis	4	0	0	4	2
8	P18PRBM2P1	PR	Mini Project with Seminar	4	0	0	4	2
			Total	26	14	0	12	18

	SEMESTER III													
Sl. No.	Course Code	Category	Course Title	Contact Period	L	Т	Р	С						
			THEORY											
1		PE	Professional Elective - V	3	3	0	0	3						
2		OE	Open Elective	3	3	0	0	3						
PRACTICAL														
3	P18PRBM3P2	PR I	Dissertation- Phase – I	20	0	0	20	10						
			Total	26	6	0	20	16						

Sl. No. Course Code Category Course Title Contact Period L T P 1 P18PRBM4P3 PR Dissertation- Phase-II 32 0 0 32 1				SEMESTER IV					
1 P18PRBM4P3 PR Dissertation- Phase-II 32 0 0 32 1		Course Code	Category	Course Title		L	Т	Р	С
1 P18PRBM4P3 PR Dissertation- Phase-II 32 0 0 32 1									
	1	P18PRBM4P3	PR	Dissertation- Phase-II	32	0	0	32	16
Total 32 0 0 32				Total	32	0	0	32	16

TOTAL CREDITS FOR THE PROGRAM = 68

LIST OF ELECTIVES

PROFESSIONAL ELECTIVE

S.No.		SUBJECT NAME	L	Т	Р	С
		PROFESSIONAL ELECTIVE (PE) - I				
1	P18PEBM011	Advanced Biosensor And Transducers	3	0	0	3
2	P18PEBM012	Advance Mathematics For Biomedical Engineering	3	0	0	3
3	P18PEBM013	Computer Based Medical Instrumentation.	3	0	0	3
		PROFESSIONAL ELECTIVE (PE) –II				
1	P18PEBM021	Tissue Engineering	3	0	0	3
2	P18PEBM022	Biomaterials And Implantable Devices	3	0	0	3
3	P18PEBM023	Physiological Modeling	3	0	0	3
		PROFESSIONAL ELECTIVE (PE) - III				
1	P18PEBM031	Bio MEMS	3	0	0	3
2	P18PEBM032	Health Hospital And Equipment Management	3	0	0	3
3	P18PEBM033	Tele Health Technology	3	0	0	3
		PROFESSIONAL ELECTIVE (PE) - IV				
1	P18PEBM041	Advanced Neural Computing.	3	0	0	3
2	P18PEBM042	Nuclear Medicine	3	0	0	3
3	P18PEBM043	Brain Control Interfaces.	3	0	0	3
		PROFESSIONAL ELECTIVE (PE) – V				
1	P18PEBM051	Principles Of Genetic Analysis	3	0	0	3
2	P18PEBM052	Human Assist Devices	3	0	0	3
3	P18PEBM053	Advances In Electronics Applied To Hospital Engineering	3	0	0	3

OPEN ELECTIVE

S.No	Code No.	Course Title	L	Т	Р	C
1	P18OECS001	Business Analytics	3	0	0	3
2	P180EMA002	Operations Research	3	0	0	3
3	P180EME003	Industrial Safety	-	-	-	-
4	P18OEBA004	Cost Management Of Engineering Projects	3	0	0	3
5	P180EME005	Composite Materials	3	0	0	3
6	P18OEEE006	Waste To Energy	3	0	0	3
7	P18OECE007	Environmental Health Engineering	3	0	0	3
8	P18OEBT008	Bio Entrepreneurship Development	3	0	0	3
9	P18OEBM009	Rehabilitation Engineering.	3	0	0	3
10	P18OEBM010	Bio Mechanics	3	0	0	3

AUDIT COURSES I &II

Sl.No.	Code No.	Course Title	Contact Periods	L	Т	Р	С
1	P18ACEN001	English for Research Paper Writing	2	2	0	0	0
2	P18ACCE002	Disaster Management	2	2	0	0	0
3	P18ACEN003	Sanskrit for Technical Knowledge	2	2	0	0	0
4	P18ACBA004	Value Education	2	2	0	0	0
5	P18ACLW005	Constitution of India	2	2	0	0	0
6	P18ACBA006	Pedagogy Studies	2	2	0	0	0
7	P18ACYO007	Stress Management by Yoga	2	2	0	0	0
8	P18ACBA008	Personality Development through Life Enlightenment Skills	2	2	0	0	0

Grand Total credits and contact hours

SEMESTER	Ι	II	III	IV	TOTAL
TOTAL CONTACT HOURS	24	26	26	32	108
CREDITS	18	18	16	16	68

SUMMARY OF CURRICULUM STRUCTURE AND CREDIT & CONTACT HOUR DISTRIBUTION

S.No	Sub Area	Credit As	per Seme	ester		No. of Credit	% of credit
		Ι	II	III	IV		
1.	Professional Core (PC)	10	10			20	29.41
2.	Professional Electives(PE)	6	6	3		15	22.06
3.	Open Electives (OE)			3		3	4.41
4.	Project Work, Soft Skill etc. (PR)	2	2	10	16	30	44.11
	Total Credit	18	18	16	16	68	
	Total Contact Hour	24	26	26	32	108	100

				A	ANAT(OMY	ANI) PHYS	SIOLO	GY		L	Т	P		С	
P18	BPCBM	101	Tota	l Con	act Ho	urs – 4	45					3	0	0		3	
		101	P	rerequ	isite co	urse -	- Bio	logy (+	2 level)					1			
			C	ourse	Coordi	nator	Nam	e & De	partmer	nt:-Dr	.Emerso	on Sol	omon	F. &	Depar	rtment.	of
					lical En	ginee	ring										
C	COURSI		-				•		1 D1	1							
								omy an	•								
		-		-	-			olved in	-			20					
								t the org gineerii			, renexe	28,					
						incure		gineerii		•							
CO						logies	s, stru	uctural a	and fun	ctiona	al eleme	nts of	huma	an bod	y		
CO						-		respira							-		
					0	1		f nervo			<u> </u>		ry na	thway	s		
													• •	•	3		
		_					-	$\frac{1}{1}$		-	_				1 1		
CO	5	Attai	n a go	ood kr	lowledg	ge on	the re	ole of h	ormone	s and	Tunctio	ns of I	Endoc	erine g	land		
CO	6	Learn	n the	anator	nical fe	atures	s of c	organs to	o constr	uct m	edical i	nstrur	nents.				
N	/apping	of Cou	irse (Outcon	nes with	h Prog	gram	outcom	es (POs	s) (1/2	2/3 indi	cates s	treng	th of			
	orrelatio	,	igh, 2	2-Med	ium, 1-	Low	1				1			r	r	T	-1
1	COs/Po	S	1	2	3	4	5	6	7	8	9	10		11	12	PSO1	PSO2
2	CO1		2	3	1	3	2	2	2	2							-
	CO2		2	3	1	3	2	2	2	2							
	CO3		2	3	1	3	2	2	2	2							1
	CO4		2	3	1	3	2	2	2	2							
	CO5		2	3	1	3	2	2	2	2							
	CO6		2	3	1	3	2	2	2	2							
3	Categor	У				ES)											
			s &	lies	ses	Engg Sciences (ES)			e		<u></u>	/e			u.	Paper/ Seminar/ Internship(PR)	
			ities	stud S)	enc	enc		nal ()	ctiv		NE	ctiv		ц.	Project/Term	em nip(
			nan	al Stu (HS)	Sci	Sci		ssio (PC	Ele		Maj ve (Ele		othe	ject	r' s msł	
			Humanities &	Social Studies (HS)	Basic Sciences (BS)	1 <u>5</u> 2		Professional Core (PC)	Core Elective (CE)		Non-Major Elective (NE)	Open Elective (OE)		Any other	Pro	ape	
			H		Bí Bí	Er		Ŭ Å	ŬÜ		ŽĒ	00	/	Aı	ŕ	ч п	
				4				\checkmark									
4	Approv	al	4	$7^{\text{th}} M$	eeting o	of Aca	dem	ic Coun	cil, Aug	g 201	8						

UNIT I CELL PHYSIOLOGY

Cell structure, Cell membrane Transport, Resting membrane potential and ionic basis of potentials, Recording of Action potentials, patch clamp, Action potential in nerve, Muscle and Heart.

UNIT II GASTROINTESTINALAND RESPIRATORY SYSTEM 9

Structure of gastrointestinal system, layers in Gastro-intestinal System (deglutition, Peristalsis) movement in stomach, small intestine and movements in GI tract and factors regulating the movement. Respiratory pathway, volumes capacities and measurement, respiratory centers and its regulation of respiration, Artificial Respiration

UNIT III ENDOCRINE AND NEURAL REFLEXES

9

Mention of Endocrine glands general hormonal action, Second messengers, anterior and posterior pituitary hormones. Components in a Simple reflex. Structure of kidney and micturition reflex, Cystometerogram.

UNIT IV CARDIOVASCULAR AND SPECIAL SENSES

9

Structure of Heart, conducting pathway and ECG, BP and its measurements. Structure of Eye and Ear, errors of refraction, photochemistry of vision and visual pathway, Middle Ear mechanics, organ of Corti and Auditory pathway, Audiometers.

UNIT V NERVOUS SYSTEM

9

Neuron, properties of Synapse, Cross section of spinal cord, ascending and descending tracts, EEG, Automatic nervous system, body temperature regulation. Cortical functions.

REFERENCES

- 1. Guyton 'Text book of Medical Physiology WB Jaunder company Philadelphia 10 edition 2002
- 2. Cyrul A Keele and Eric Neil Samsons Wrights Applied physiology Oxford University press New Delhi 1991
- 3. Ranganathan T S,Text Book of human Anatomy S. Chand and company New Delhi 1994
- 4. Best and Taylor, The livery Body BC publication New Delhi 1980

	ADVANCE IN BIOMEDICAL	L	Т	Р	С
	INSTRUMENTATION				
P18PCBM102	Total Contact Hours – 45	3	0	0	3

			P	rerequ	isite co	urse -	- Bas	ic Instru	umentat	tions						
				Course Enginee		nator	Nam	e & De	partmer	nt:-Mi	r.Prasat	h S. & Depa	artmen	t. of I	Biomed	ical
C	COURS	E OB.														
						out m	ieasu	rements	s of para	amete	rs relate	ed to respira	atory s	vstem	l	
					-			sory re	-			1				
								of diathe								
								and its u								
						atient	safet	y agains	st electr	ical h	azard					
CO:					-	monto	ofm	momente	na nalata	d to a	acminat					
		_									_	ory system				
CO								ques of a			onses					
CO.	3	Ana	lyze d	ifferer	nt types	and \overline{u}	ises o	of diathe	ermy un	nits						
CO4	4	Disc	cuss ul	ltrasou	nd ima	ging t	echn	iques ar	nd its us	sefuln	ess in d	iagnosis				
CO:	5	Out	ine th	e impo	ortance	of pat	tient	safety a	gainst e	electri	cal haza	ard				
CO	6	The	applic	cation	of patie	ent mo	onitor	ring sys	tem.							
							gram	outcom	es (POs	s) (1/2	2/3 indi	cates streng	th of			
		g of Course Outcomes with Program outcomes (POs) (1/2/3 indicates strength of on) 3-High, 2-Medium, 1-Low														Г
1	COs/Po	S	1	2	3	4	5	6	7	8	9	10	11	12	PSO1	PSO2
2	CO1		3	3			2			2	2		2			3
	CO2		3	3	3	3	3			3	3	3	3			5
	CO3		3	3	2	2	2			2		2				
	CO4		3	3		3	3				3		3			
	CO5		3	3			2			2	2					
	CO6		3	3			2			2	2					
3	Categor	у	Humanities &	Social Studies (HS)	Basic Sciences (BS)	Engg Sciences (ES)		Professional Core (PC)	Core Elective (CE)		Non-Major Elective (NE)	Open Elective (OE)	Any other	Project/Term	Paper/ Seminar/ Internship(PR)	
4	A	<u>_1</u>		17 th N/	actina	f A aa	dam	✓ ic Coun		~ 201	•					
4	Approv	al		+/ IVI	eeung (uem	ic Coun	cii, Aug	g 201	0					

UNIT I - ELECTRO PHYSIOLOGICAL MEASUREMENTS

9

Electrodes – Limb electrodes – floating electrodes – pre-gelled disposable electrodes – Micro-, needle- electrodes – Amplifiers – Differential amplifiers, Instrumentation amplifier, Chopper amplifiers – Isolation amplifier. ECG, EEG, EMG - Lead systems and recording methods.

UNIT II - BLOOD GAS ANALYZERS AND OXIMETERS

Blood pH measurement- Blood pCO2 measurement- Blood pO2 measurement- intra arterial - complete blood gas analyzer – Oximetry - Principle, ear, pulse, skin reflectance, intravascular oximeter.

UNIT III- PATIENT MONITORING SYSTEMS

9

Patient monitoring system-Bedside, Central monitoring, Measurement of heart rate, pulse rate, blood pressure-Direct-, and indirect- methods, temperature, respiration rate, catheterization laboratory instrumentation

UNIT IV - EAR AND OPTHALMOLOGICAL EQUIPMENTS

9

Ear: Hearing loss, Sound conduction system, Basic audiometer - Pure tone audiometer - Audiometer system-Bekesy - Evoked response audiometer system - Hearing aids. Vision: Visual acuity - Errors in vision slit lamp, Tonometer, Ophthalmoscope, Perimeter.

UNIT V – CLINICAL LAB INSTRUMENTS

9

Introduction-medical diagnosis with chemical test – Spectrophotometer – Colorimeter - Auto analyzers - clinical flame photometer - selective ion based electrolytes - Electrical safety in medical environment - shock hazards – leakage current-safety codes-electrical safety analyzer - testing of biomedical equipments.

REFERENCES

1. R. S. Khandpur "Handbook of Bio-Medical Instrumentation", 2nd Edition, Tata McGraw Hill, 2003.

2. Leslie Cromwell, Fred J Weibell, Erich A Pfeiffer "Biomedical Instrumentation and Measurements", Prentice Hall of India, 2011. 8

3. Joseph J. Carr and John M Brown, "Introduction to Biomedical Equipment Technology", 4 th edition, Pearson Education, 2008.

4. John G.Webster (editor), "Bioinstrumentation", John Wiley & Sons, 2004.

5. Joseph Bronzino, "Biomedical Engineering & Instrumentation", Taylor & Francis, 3rd edition, 2006.

6. Ronald Pitts Crick, Pang Khaw "Text book of clinical Ophthalmology", 2nd Edition, World Scientific publication. ISBN 981-238-128-7.

P18PRBM101	BIO-RESEARCH METHODOLOGY & IPR	L	Т	Р	С
	Total Contact Hours –45	2	0	0	2
	Prerequisite – NIL				
	Course Designed by – Dept. of Electronics and Com	munica	ation E	ngineer	ring.

OBJECTIVES

• Student will understand research problem formulation and Analyze research related information

Unit 1: RESEARCH CONCEPTS

Concepts, meaning, objectives, motivation, types of research, approaches, research (Descriptive research, Conceptual, Theoretical, Applied & Experimental).

Formulation of Research Task – Literature Review, Importance & Methods, Sources, quantification of Cause Effect Relations, Discussions, Field Study, Critical Analysis of Generated Facts, Hypothetical proposals for future development and testing, selection of Research task.

Unit 2: DATA ANALYSIS AND INTERPRETATION

Effective literature studies approaches, analysis Plagiarism, Research ethics

Unit 3: REPORT WRITING

Effective technical writing, how to write report, Paper Developing a Research Proposal, Format of research proposal, a presentation and assessment by a review committee

Unit 4: NATURE OF INTELLECTUAL PROPERTY

Patents, Designs, Trade and Copyright, Process of Patenting and Development: technological research, innovation, patenting, development. International Scenario: International cooperation on Intellectual Property. Procedure for grants of patents, Patenting under PCT.

Unit 5: PATENT RIGHTS AND NEW DEVELOPMENTS IN IPR

Scope of Patent Rights. Licensing and transfer of technology. Patent information and databases. Geographical Indications, Administration of Patent System. New developments in IPR; IPR of Biological Systems, Computer Software etc. Traditional knowledge Case Studies, IPR and IITs.

REFERENCE BOOKS:

1. J.J. Grainger &W.D.Stevenson, "Power system analysis", McGraw Hill ,2003

- 2. A. R. Bergen & Vijay Vittal, "Power System Analysis", Pearson, 2000
- 3. L.P. Singh, "Advanced Power System Analysis and Dynamics", New Age International, 2006
- 4. G.L. Kusic, "Computer aided power system analysis", Prentice Hall India, 1986
- 5. A.J. Wood, "Power generation, operation and control", John Wiley, 1994

P18PCBM1L1	ADVANCE BIO MEDICAL INSRUMENTATION LAB	L	Т	Р	С
	Total Contact Hours – 45	0	0	4	2
	Prerequisite course – NIL				
	Course Coordinator Name & Department:- Mr.Prasa Engineering	th S.	& Dep	artmei	nt. of Biomedical

•		o provi	de pi	ractice	on reco			analysi peutic e			t Bio po	tentials				
0	COURSI	E OUT	CON	MES (COs)											
CO	1	IC ci	rcuits	s, Op-a	amps, re	ectifie	rs an	d its ap	plicatio	ns						
CO	2	Safet	y cor	ncerns	in hosp	oitals										
CO	3	Use of	of filt	ers in	biomed	lical a	pplic	ations								
CO	4	Diffe	rent	types	of read-	out de	evice	s used								
CO	5				d coun											
CO	6	The a	applic	cations	s of amp	plifier	s in i	nstrume	entation	l						
с	orrelatio	n) 3-H					gram	outcom	es (PO	s) (1/2	2/3 indi	cates streng	gth of	•		
1	COs/Po	s	1	2	3	4	5	6	7	8	9	10	11	12	PSO1	PSO2
2	CO1		3	2	3	2	2			2	2		2			
	CO2		2	2	3	2	3			2	3	2				
	CO3		3	2	2	3	2			3		2	3			2
	CO4		3	3	2	3	2			2	3	3	2			3
	CO5		2	3	3	3	3				2		3			
	CO6		2	3	3	3	3			2	2	2	2			
3	Categor	у	Humanities &	Social Studies (HS)	Basic Sciences (BS)	Engg Sciences (ES)		Professional Core (PC)	Core Elective (CE)		Non-Major Elective (NE)	Open Elective (OE)	Any other	Project/Term	Paper/ Seminar/ Internship(PR)	
4	Approv	al	4	47 th M	eeting o	of Aca	demi	ic Coun	cil, Au	g 201	8		<u> </u>			

LIST OF EXPERIMENTS

- 1. Construction and testing of Instrumentation amplifier
- 2. Design of Instrumentation amplifier using Single IC and Single supply
- 3. Patient monitoring system and Bio-telemetry.
- 4. Plotting of Human auditory response using audiometer.
- 5. Performance and testing of Surgical Diathermy unit using Diathermy analyzer.
- 6. Recording of Electromyogram.
- 7. Construction and testing of nerve stimulator.
- 8. Study of ECG machine.
- 9. Study of EEG machine.

					AN	ATOM	Y AN	ID P	HYSIC	DLOGY	Z LAF	3	L	Т	Р		С	
P1 :	8PCBI	Л1	L2	Tota	l Cont	tact Ho	urs – 4	45					0	0	4		2	
	01 021			Р	rerequ	isite co	urse -	- NIL										
				C	Course	Coordi	nator	Nam	e & De	partmer	nt:- D	r.Emers	on Sol	lomor	n F. &	z Depa	artment	. of
						lical En	ginee	ring										
	COUR									1.51								
	•								•	d Physi								
	•		•		-	•				ı body f						•	4 . 1	1
	•		gineeri			edge ga	ined a	adout	the org	gan func	ctions	, reflexe	es, and	spec	iai sen	ises in	to bion	iedical
	COUR					COs)												
CC							logies	s, stru	ctural a	and fund	ctiona	l eleme	nts of	huma	n bod	у		
CC	02		The p	hysi	ologic	al aspec	cts of	respi	ratory a	and card	liac sy	ystem						
CC	03			-					-	us tissu	-		audito	ry pat	hway	s		
CC)4									ation; u					-			
CC)5		Attair	n a g	ood kr	nowledg	ge on	the ro	ole of h	ormone	s and	functio	ns of I	Endoc	rine g	land		
CC)6		The fe	atur	es of b	lood in	clotti	ng ar	nd bleed	ling tim	e							
1	Mappir	ig (of Cou	rse (Dutcon	nes witl	n Prog	gram	outcom	es (POs	s) (1/2	2/3 indi	cates s	trengt	th of			
						ium, 1-				,				U				
1	COs/I	os	6	1	2	3	4	5	6	7	8	9	10		11	12	PSO1	PSO2
2	CO1			3	2	3	2	2			2	2			2			
	CO2			2	2	3	2	3			2	3	2	2				
	CO3			3	2	2	3	2			3		2		3			
	CO4			3	3	2	3	2			2	3	3	;	2		1	
	CO5			2	3	3	3	3				2			3			
	CO6			2	3	3	3	3			2	2	2		2			
3	Categ	ory	/				(ES)									-		
				s &	lies	ces	ses (ē		Î	ve			uria .	PR	
				itie	Stuc S)	ienc	enc))	ctiv		NB G	scti		r	Project/Term	hip(
				nan	ial Sti (HS)	Sc	Sci		ssic (PC	Ele		Maj ive	Ele		othe	jec'	r/ v ms]	
				Humanities &	Social Studies (HS)	Basic Sciences (BS)	Engg Sciences (E		Professional Core (PC)	Core Elective (CE)		Non-Major Elective (NE	Open Elective (OE)	κ.	Any other	Prc	raper/ Seminar/ Internship(PR)	
						(E B	Ē		Ŭ Đ	υU		ZÏ	0.5	/	A	, F	4 ' 7	
1	Anne		1		17 th 17	ootina -	f A aa	dam		cil, Au	~ 201	•						
4	Appro	va	1		+/ 1 VI	cetting (л Аса	uem	ic Coun	cii, Aug	g 2010	0						

LIST OF EXPERIMENTS

- 1. Determination of Blood group
- 2. Differential Count Of WBC
- 3. Estimation Of Haemoglobin
- 4. Enumeration of WBC
- 5. Enumeration Of RBC
- 6. Determination Of Erythrocytes Sedimentation Rate
- 7. Determination of Bleeding time &Clotting Time
- 8. Osmotic Fragility of RBC
- 9. Determination of Blood Pressure
- 10. Study of the effects of Exercise on Cardiovascular and Respiratory system
- 11. Effect of Postural change on Blood pressure and pulse rate
- 12. ECG -Demonstration

- 13. Recording of Respiratory movements using Stethography
- 14. Examination of the Sensory system
- 15. Examination of the Reflexes

	MEDICAL IMAGE ANALYSIS	L	Т	P	С
P18PCBM201	Total Contact Hours – 45	3	0	0	3
	Prerequisite course – Knowledge in image process	ng (B.7	ech/B	.E)	
	Course Coordinator Name & Department:-Ms.Krij Engineering	a N & 1	Depart	ment.	of Biomedical
COURSE OBJ	ECTIVES:-				
To study	y the production of x-rays and its application to different	t medic	al Ima	aging	
techniqu	les.				
To study	y the different types of Radio diagnostic techniques.				
To study	y the special imaging techniques used for visualizing the	e cross	section	ns of t	he body.
• To study	y the imaging of soft tissues using ultrasound technique				
COURSE OUT	TCOMES (COs)				
CO1 Stud	ents will get the clear domain knowledge about the var	ous me	dical I	magin	g techniques.
CO2 Stude	ents have various diagnostic applications of the medica	imagin	g tec	hniqu	es.
	ents will get the clear domain knowledge the image fur the transforms	dament	als an	d	
CO4 Stud	y the image enhancement techniques				
CO5 Stud	y the image restoration procedures and image compres	sion pro	cedure	es.	

CO	6 S	tudy	the	image	e visual	izatio	ns									
	Iapping of orrelation)						gram	outcom	es (PO	s) (1/2	2/3 indic	cates strengt	th of			
1	COs/Pos		1	2	3	4	5	6	7	8	9	10	11	12	PSO1	PSO2
2	CO1		3		2	3				3			2			
	CO2							2								
	CO3		2			2						2				
	CO4				1										2	
	CO5					3				3						
	CO6		3		2	3				3			2			
3	Category		Humanities &	Social Studies (HS)	Basic Sciences (BS)	Engg Sciences (ES)		Professional Core (PC)	Core Elective (CE)		Non-Major Elective (NE)	Open Elective (OE)	Any other	Project/Term	Paper/ Seminar/ Internship(PR)	
				th a r		<u> </u>		•		0.01						
4	Approval		47 th Meeting of Academic Council, Aug 2018													

UNIT I IMAGE FUNDAMENTALS

Image perception, MTF of the visual system, Image fidelity criteria, Image model, Image sampling and quantization – two dimensional sampling theory, Image quantization, Optimum mean square quantizer, Image transforms – 2D-DFT and other transforms.

UNIT II IMAGE PREPROCESSING

Image enhancement – point operation, Histogram modeling, spatial operations, Transform operations, Image restoration – Image degradation model, Inverse and Weiner filtering. Image Compression – Spatial and Transform methods

UNIT III MEDICAL IMAGE RECONSTRUCTION

Mathematical preliminaries and basic reconstruction methods, Image reconstruction in CT scanners, MRI, fMRI, Ultra sound imaging., 3D Ultra sound imaging Nuclear Medicine Imaging Modalities-SPECT,PET, Molecular Imaging

UNIT IV IMAGE ANALYSIS AND CLASSIFICATION

Image segmentation- pixel based, edge based, region based segmentation. Image representation and analysis, Feature extraction and representation, Statistical, Shape, Texture, feature and image classification – Statistical, Rule based, Neural Network approaches

9 'm

9

9

UNIT V IMAGE REGISTRATIONS AND VISUALIZATION

Rigid body visualization, Principal axis registration, Interactive principal axis registration, Feature based registration, Elastic deformation based registration, Image visualization -2D display methods, 3D display methods, virtual reality based interactive visualization.

REFERENCES

- 1. Atam P.Dhawan, 'Medical Image Analysis', Wiley Interscience Publication, NJ, USA 2003.
- 2. R.C.Gonzalez and R.E.Woods, 'Digital Image Processing', Second Edition, Pearson Education, 2002.
- 3. Anil. K. Jain, 'Fundamentals of Digital Image Processing', Pearson education, Indian Reprint 2003.
- 4. Alfred Horowitz, 'MRI Physics for Radiologists A Visual Approach', Second edition Springer Verlag Network, 1991.
- 5. Kavyan Najarian and Robert Splerstor," Biomedical signals and Image processing", CRC Taylor and Francis, New York, 2006
- 6. John L.Semmlow,"Biosignal and Biomedical Image Processing Matlab Based applications" Marcel Dekker Inc., New York, 2004
- 7. Jerry L.Prince and Jnathan M.Links," Medical Imaging Signals and Systems"- Pearson Education Inc. 2006

	BIOMEDICAL SIGNAL ANALYSIS	L	Τ	P	С
	Total Contact Hours – 45	3	0	0	3
P18PCBM202	Prerequisite course – Basic Digital Signal Processir	ıg			
	Course Coordinator Name & Department:- Mr.Kish Engineering	ore K &	& Dep	artme	nt. of Biomedical
COURSE OBJ					
To learn	discrete Fourier transform and its properties				
To know	the characteristics of IIR and FIR filters learn the design	gn of in	finite	and fi	nite impulse
 response 	e filters for filtering undesired signals				
To under	rstand Finite word length effects				
To study	the concept of Multi-rate and adaptive				
COURSE OUT	COMES (COs)				
CO1 Appl	y DFT for the analysis of Digital Signals & Systems				
CO2 Desig	gn IIR and FIR Filters				
CO3 Char	acterize finite word length effect on filters				
CO4 Desig	gn the Multi-Rate Filters				
CO5 Appl	y Adaptive Filters to equalization				
CO6 To le	earn the feature extraction of the time frequency				

	Iapping of Cou					gram	outcom	es (POs	s) (1/2	2/3 indio	cates streng	th of			
_	orrelation) 3-Hi	igh, 2	2-Med	lium, 1-	Low										-
1	COs/Pos	1	2	3	4	5	6	7	8	9	10	11	12	PSO1	PSO2
2	CO1	3			2	3		2			2				
	CO2			2										2	
	CO3	2			3						2				
	CO4					3		3							
	CO5	3									3				
	CO6			2	3						2				
3	Category	Humanities &	Social Studies (HS)	Basic Sciences (BS)	Engg Sciences (ES)		Professional Core (PC)	Core Elective (CE)		Non-Major Elective (NE)	Open Elective (OE)	Any other	Project/Term	Paper/ Seminar/ Internship(PR)	
			th a c		<u> </u>			-	201						
4	Approval	4	/" M	eeting o	of Aca	demi	ic Coun	cil, Aug	g 2018	8					

UNIT I SIGNAL, SYSTEM AND SPECTRUM

9

Characteristics of some dynamic biomedical signals, Noises- random, structured and physiological noises. Filters- IIR and FIR filters. Spectrum – power spectral density function, cross-spectral density and coherence function, cepstrum and homomorphic filtering. Estimation of mean of finite time signals.

UNIT II TIME SERIES ANALYSIS AND SPECTRAL ESTIMATION 9

Time series analysis – linear prediction models, process order estimation, lattice representation, non stationary process, fixed segmentation, adaptive segmentation, application in EEG, PCG signals, Time varying analysis of Heart-rate variability, model based ECG simulator. Spectral estimation – Blackman Tukey method, periodogram, and model based estimation. Application in Heart rate variability, PCG signals,

UNIT III ADAPTIVE FILTERING AND WAVELET DETECTION

9

9

9

Filtering – LMS adaptive filter, adaptive noise canceling in ECG, improved adaptive filtering in FECG, Wavelet detection in ECG – structural features, matched filtering, adaptive wavelet detection, detection of overlapping wavelets.

UNIT IV BIOSIGNAL CLASSIFICATION AND RECOGNITION

Signal classification and recognition – Statistical signal classification, linear discriminate function, direct feature selection and ordering, Back propagation neural network based classification. Application in Normal versus Ectopic ECG beats.

UNIT V TIME FREQUENCY AND MULTIVARIATE ANALYSIS

Time frequency representation, spectrogram, Wigner distribution, Time-scale representation,

scalogram, wavelet analysis – Data reduction techniques, ECG data compression, ECG characterization, Feature extraction- Wavelet packets, Multivariate component analysis-PCA, ICA

REFERNCES

- 1. Arnon Cohen, Bio-Medical Signal Processing Vol I and Vol II, CRC Press Inc., Boca Rato, Florida 1999.
- 2. Rangaraj M. Rangayyan, 'Biomedical Signal Analysis-A case study approach', Wiley-Interscience/IEEE Press, 2002
- 3. Willis J. Tompkins, Biomedical Digital Signal Processing, Prentice Hall of India, New Delhi, 2003.
- 4. Emmanuel C. Ifeachor, Barrie W.Jervis, 'Digital Signal processing- A Practical Approach' Pearson education Ltd., 2002
- 5. Raghuveer M. Rao and Ajith S.Bopardikar, Wavelets transform Introduction to theory and its applications, Pearson Education, India 2000.
- 6. K.P.Soman,K.I Ramachandran,"Insight into wavelet from theory to practice", PHI, New Delhi,2004
- 7. John L.Semmlow," Biosignal and Biomedical Image Processing Matlab Based applications" Marcel Dekker Inc., New York, 2004
- Kavyan Najarian and Robert Splerstor," Biomedical signals and Image processing", CRC – Taylor and Francis, New York, 2006
- 9. D.C.Reddy,"Biomedical Signal Processing Principles and Techniques",TMH,New Delhi,2005
- 10. Gari D.Clifford, Francisco Azuaje and Patrick E.McSharry," Advanced Methods and Tech for ECG Data Analysis", ARTECH House, Boston, 2006

	MEDICAL IMAGE ANALYSIS LAB	L	Т	Р	С								
P18PCBM2L1	Total Contact Hours – 45	0	0	4	2								
	Prerequisite course – Knowledge in image processin	ig (B.T	ech/B	.E)									
	Course Coordinator Name & Department:- Ms.Krip Engineering	a N &	Depar	tment	. of Biomedical								
COURSE OBJ	ECTIVES:-												
To study	o study the production of x-rays and its application to different medical Imaging												
techniqu	techniques.												
To study	the different types of Radio diagnostic techniques.												
To study	the special imaging techniques used for visualizing the	cross	section	ns of t	he body.								
To study	the imaging of soft tissues using ultrasound technique				-								
COURSE OUT	TCOMES (COs)												
CO1 Stud	lents will get the clear domain knowledge about the vari	ous me	edical	imagi	ng techniques.								
CO2 Stude	ents have various diagnostic applications of the medical	imagir	ng teo	chniqu	ies.								
CO3 Stude	Students will get the clear domain knowledge the image fundamentals and image transforms												

CO	4	Stuc	ly the	image	enhanc	cemen	t tecl	nniques								
CO	5	Stuc	ly the	image	restora	tion p	roce	dures ar	nd imag	ge con	npressio	on procedure	es.			
CO N			•	•	features				es (PO	s) (1/2	2/3 indic	cates streng	th of			
	orrelatio	· · ·	High, 1	2-Med	lium, 1-	Low					1		-	1	1	
1	COs/Pc	DS	1	2	3	4	5	6	7	8	9	10	11	12	PSO1	PSO2
2	CO1		3	2	3			3			2					
	CO2						2									
	CO3		2		2					2					2	
	CO4			1								1				
	CO5					3				3						
	CO6		2					2			3					
3	Categor	ry	Humanities &	Social Studies (HS)	Basic Sciences (BS)	Engg Sciences (ES)		 Professional Core (PC) 	Core Elective (CE)		Non-Major Elective (NE)	Open Elective (OE)	Any other	Project/Term	Paper/ Seminar/ Internship(PR)	
4	Approv	al		47^{th} M	eeting of	of Aca	demi		cil. Au	g 201	8					
		***		., 101						5 -01	-					

LIST OF EXPERIMENTS

- 1. Fundamentals of medical image analysis
- 2. Gray level transformation and histogram processing of X-ray images.
- 3. Noise removal and filtering in various medical images.
- 4. Pixel based segmentation of MRI images
- 5. Edge based segmentation of CT images.
- 6. Morphological operations on x-ray images.
- 7. Statistical feature extraction on X-ray and CT images.
- 8. Medical Image registration.
- 9. Vessel extraction in angiographic images using MIMICS software.
- 10. Geometrical measurements in Medical images using MIMICS software

	BIOMEDICAL SIGNAL ANALYSIS LAB	L	Т	Р	С
P18PCBM2L2	Total Contact Hours – 45	3	0	0	3
	Prerequisite course – Basic Digital Signal Processing				

				Course Enginee		nator	Nam	e & Dej	partmei	nt:- M	ls.Kisho	ore K & D	epartme	nt. of	Biome	dical
C	COURSI	E OBJ														
						ansfo	rm ai	nd its pr	opertie	S						
								-	-		e desigi	n of infinit	te and fi	nite ir	npulse	
		-			-			l signals	8							
					e word	-										
		-				ulti-ra	te an	d adapt	ive							
	COURSI															
CO	1	Appl	y DF	T for t	he anal	ysis c	of Dig	gital Sig	gnals &	Syste	ems					
CO			·		FIR Filt											
CO	3	Chara	acteri	ize fini	ite word	d leng	th ef	fect on	filters							
CO	4	Desig	gn the	e Mult	i-Rate l	Filters	5									
CO	5	Appl	y Ad	aptive	Filters	to equ	ualiza	ation								
CO	6	Learn	the	design	ing of I	Filters	5									
	Iapping orrelatio						gram	outcom	nes (PO	s) (1/2	2/3 indi	cates stren	igth of			
	COs/Po		1	2 11100	3	4	5	6	7	8	9	10	11	12	PSO1	PSO2
2	CO1		3			2	3		2			2				
2	CO2		5		2	1	5									
	CO3		2			3						2			2	
	CO4						3		3						_	
	CO5		3									3				
	CO6															
3	Categor	у	Humanities &	Social Studies (HS)	Basic Sciences (BS)	Engg Sciences (ES)		Professional Core (PC)	Core Elective (CE)		Non-Major Elective (NE)	Open Elective (OE)	Any other		Paper/ Seminar/ Internship(PR)	
			Hu	Soc	Basic (BS)	Eng		Profé Core	Core (CE)		Non- Elect	Opei (OE)	Any	Pr	Pap Inte	
4	Approv	al	4	17 th M	eeting o	of Aca	dem	ic Coun	icil, Au	g 201	8					

LIST OF EXPERIMENTS

- Representation of basic signals
 Linear convolution
- 3. Autocorrelation and cross correlation
- 4. FFT and IFFT Difference equation

- 5. Representation Digital IIR
- 6. Butterworth filter-LPF & HPF
- 7. Digital IIR chebychev filter-LPF & HPF
- 8. Design of FIR filter using windowing technique
- 9. Upsampling and downsampling
- 10. Analysis of ECG
- 11. Analysis of EEG
- **12.** Analysis of PCG

PROFESSIONAL ELECTIVE

			ADVA	NCEI	D BI	OSENS	SOR A	ND		L	Т	Р		С	
P18PEBM011				TRA	NSI	DUCEF	RS								
	Tota	l Cont	tact Ho	urs – 4	45					3	0	0		3	
	P	rerequ	isite co	ourse -	- Bas	ic knov	wledge	of elec	ctronic	device	es and	senso	rs		
		ourse nginee	Coordi ering	nator	Nam	e & De	partme	ent:- M	Ir.Prasa	th S. &	& Dep	artme	nt. of	Biomeo	dical
COURSE OBJ	ЕСТ	IVES	:-												
Understa		-	irpose	of m	easur	ement,	the r	nethod	ls of 1	neasur	emen	ts, eri	ors a	ssociat	ed with
measure															
Know th						classifi	cations	and the	he chai	acteris	stics o	f diffe	erent t	ransdu	cers and
study its						1. 1									
Know th	e diff	terent	display	and r	ecore	ling de	vices.								
COURSE OUT	CON	AES (COs)												
			rpose a	nd me	thods	s of me	asurem	ents							
		-	t displa						rious a	nlicat	ione				
1			*	•		0						<u> </u>	1.00		1
		-	-				ssificat	ions a	nd the	charac	teristi	cs of	differ	ent trai	nsducers
	-		medica	11					1		- 4 1				
CO4 Reme bioser			unders	tand	the c	oncepts	s, type	s, wor	King a	nd pra	ctical	appli	cation	IS OF IT	nportant
CO5 Know	v son	ne of t	he com	monly	use	d biom	edical t	ransdu	icers						
CO6 Learn	n to a	pply tl	he appl	icatio	n bas	ed n bi	osenso	rs in m	nedical	field					
Mapping of Cou											streng	th of			
correlation) 3-H					51 4111	0410011	105 (1 0		2/ 0 111 0 .	ieutes .	strong				
1 COs/Pos	1	2	3	4	5	6	7	8	9	10		11	12	PSO1	PSO2
2 CO1												<u> </u>			
CO2			3	3		2									3
CO3		2	3	3	1	3								1	

	CO4	3	2	3	3										
	CO5			3		3									
	CO6														
3	Category	Humanities &	Social Studies (HS)	Basic Sciences (BS)	Engg Sciences (ES)		Professional Core (PC)	Core Elective (CE)		Non-Major Elective (NE)	Open Elective (OE)	Any other	Project/Term	raper/ semmar/ Internship(PR)	
4	Approval	4	7 th M	eeting o	of Aca	demi	ic Coun	cil, Au	g 2018	8		<u> </u>	<u> </u>		

UNIT - I CHEMICAL SENSORS

Blood –Gas and Acid –base physiology Electrochemical sensors, Chemical Fibro sensors, Iron-Selective Field-Effect Transistor (ISFET), Immunologically Sensitive Field Effect Transistor (IMFET), Integrated flow sensor and Blood Glucose sensors.

UNIT - II CHARACTERISTICS OF TRANSDUCERS

Static characteristics - accuracy, precision, sensitivity, linearity etc - mathematical model of transducers - zero first - order and second - order transducers - response to impulse step, ramp and sinsoidal inputs.Non polarizable electrodes and body surface recording electrodes. Ultrasonic Transducers for Measurement and therapy – radiation detectors – NIR spectroscopy.

UNIT - III BIOMEDICAL SENSORS

Sensors Terminology in human body, Introduction, Cell, Body Fluids Musculoskeletal system, Bioelectric Amplifiers, Bioelectric Amplifiers for Multiple input Circuits, Differentional Amplifiers, Physiological Pressure and other cardiovascular measurements and devices.

UNIT – IV BIOSENSORS - PHYSIOLOGICAL RECEPTORS - J RECEPTORS

Chemo receptors, Baroreceptors, Touch receptors, Biosensors - Working Principle and Types, Applications.

UNIT – V ADVANCED SENSOR DESIGN

Fluoroscopic machines design, Nuclear medical systems, EMI to biomedical sensors, types and sources of EMI, Fields, EMI effects. Computer systems used in Xray and Nuclear Medical equipments. Calibration, Typical faults, Trouble shooting, Maintenance procedure for medical equipments and Design of 2& 4 wire transmitters with 4 - 20 mA output.

9

9

9

9

Text Book

- 1. Sensors Hand Book Sabaree Soloman Sensors Hand Book, McGraw Hill, 1998
- 2. Smith H.M. Principles of Holography, John Wiley & Sons, New York, 1975
- 3. J.G. Webster Medical instrumentation Application and Design, Houghton Mifilin Co. 2004

References

1. Carr and Brown - Introduction to Medical Equipment Technology, Addison Wesley. 1999

2. Culshaw B and Dakin J (Eds) Optical Fibre Sensors, Vol. 1 & 2 Artech House, Norwood. (1989)-

3. P. Garnell- Guided Weapon Control Systems - Pergamon Press. 1980

	ADV	ANCE N			ICS F		OMED	ICAL	L	T	Р		С	
P18PEBM012	Total	Contact]	Hours – 4	45					3	0	0		3	
	Pre	erequisite	course -	- Eng	gineerin	g Math	is Knov	vledge						
		urse Coo gineering		Nam	e & De	partme	nt:- Mr	.Kisho	ore K a	& Dep	artme	nt. of	Biome	dical
COURSE O	BJECTI	VES:-												
To encourage a Markov cha thorough and concept and a Principles, Tr	ain, and he l effective an underst ransportat	ow simpl account tanding c ion and A	e ideas c of discre of basic c Assignme	of cor te-tin	nditiona ne Mar pts in L	il proba kov cha inear P	ability a ains and rogram	nd ma d To p ming t	trices rovide	can be the st	e used tudent	to giv with	ve a	
COURSE O		-	-											
CO1 To	o understa	nd the m	atrices a	nd so	me app	olication	ns.							
CO2 To	o understa	nd the G	eometric	, Uni	form, I	Expone	ntial, G	amma						
CO3 To	o understa	nd the li	near prog	gram										
	pply the com discus						and A	ssignn	nent I	Proble	m, pa	rticipa	ate in t	he class
	xplain and twork mo		strate the	bas	ic conc	epts of	f PERT	- CPN	1 and	their	applic	cation	, repro	duce the
CO6 To	o learn ab	out the R	andom p	roces	ssed an	d its ap	plicatio	ons						
Mapping of C correlation) 3			-	gram	outcon	nes (PO	o s) (1/2/	/3 indi	cates s	strengt	th of			
1 COs/Pos	1	2 3	4	5	6	7	8	9	10		11	12	PSO1	PSO2

2	CO1	3	3	2	2	3					1	3			
	CO2	3			3	3					2	3			
	CO3	3	3	3							3	3		2	
	CO4	3	2	2					1	2	1	2			
	CO5	3			3	2			2	2	2	1			
	CO6	3	2	2					2		2	2			
3	Category	Humanities &	Social Studies (HS)	Basic Sciences (BS)	Engg Sciences (ES)		 ▲ Professional Core (PC) 	Core Elective (CE)		Non-Major Elective (NE)	Open Elective (OE)	Any other	Project/Term	Internship(PR)	
4	Approval	4	47 th M	eeting of	of Aca	dem	ic Coun	cil, Au	g 201	8		•	•		

UNIT I LINEAR ALGEBRA

Vector spaces – norms – Inner Products – Eigen values using QR transformations – QR factorization - generalized eigenvectors – Canonical forms – singular value decomposition and applications - pseudo inverse – least square approximations --Toeplitz matrices and some applications.

UNIT II RANDOM PROCESSES

Classification – Auto correlation - Cross correlation - Stationary random process – Markov process – Markov chain - Poisson process – Gaussian process.

UNIT III LINEAR PROGRAMMING

Formulation – Graphical solution – Simplex method – Two phase method

UNIT IVTRANSPORTATION & ASSIGNMENT PROBLEMS

Transportation models – Vogel's approximation method MODI method – Unbalanced transportation problem – Degeneracy in transportation models - Assignment problems – Hungarian method

UNIT V NETWORKS & REPLACEMENT MODELS

Networks – PERT and CPM – Network diagrams – Shortest route – Minimum spanning tree, Replacement models– Individual and Group replacement policy

REFERENCES:

- 1. Andrews,L.C. and Philips.R.L. "Mathematical Techniques for engineering and scientists", Printice Hall of India,2006.
- 2. O'Neil P.V. "Advanced Engineering Mathematics", (Thomson Asia Pvt Ltd, Singapore) 2007, cengage learning India private limited.
- 3. Kanti Swarup, Gupta P.K., and Manmohan, "Operations Research", Sultan Chand &

9

9

9

9

Sons 1997. Paneerselvam R., Operations research, Prentice-Hall of India, New Delhi, 2001.

- 4. T. Veerarajan, "Operations Research", Published by Orient Black Swan, 2010.
- 5. Oliver C. Ibe, "Fundamentals of Applied Probability and Random Processes, Academic Press, (An imprint of Elsevier), 2010.

					-		SED N ENTAT	AEDIC TION	AL		L	Т	Р		С	
P18PEBM01	3	Tota	l Con	tact Ho	urs – 4	45					3	0	0		3	
		P	rerequ	isite co	ourse -	- Bas	ic Med	ical Ins	trume	ntations	5	1				
			ourse		nator	Nam	e & De	partme	nt:- M	s.Vinoc	lini R.	& De	epartm	ent. c	of Biom	edical
COURSE	OBJI	ECT	IVES	:-												
	-								0	nedical n two de	0	-	g educ	ation,		
gra ind	phics, epend	pre ent l	esents earnin	educat g.	tors v	vith	tremen	dous o	opportu	and as inities media f	for d	istanc	e edu	catio	n and	ırses
COURSE	OUT	CON	MES (COs)												
				-	are co	mpoi	nents a	nd its ir	nterfac	e						
CO2	Diffe	ent 1	microp	process	ors an	d its	archite	cture								
CO3	Pentiu	ım p	rocess	ors and	l its ar	chite	cture									
CO4	Telen	nedic	ine ar	d appli	catior	IS										
CO5	Biom	etric	system	ns in u	se tod	ay.										
CO6	Under	rstan	d the	networl	k secu	rity										
Mapping o						gram	outcon	nes (PC	os) (1/2	2/3 indi	cates s	strengt	th of			
1 COs/Pos		1	2	3	4	5	6	7	8	9	10		11	12	PSO1	PSO2
2 CO1		3		3				3			2	2				
CO2						2										
CO3		2		2												
CO4			1										1			3
CO5								3							-	
CO6		3		3				3			2	2				

3	Category	Humanities & Social Studies (HS)	Basic Sciences (BS)	Engg Sciences (ES)	Professional Core (PC)	Core Elective (CE)	Non-Major Elective (NE)	Open Elective (OE)	Any other	Project/Term Paper/ Seminar/ Internship(PR)
						~				
4	Approval	47 th M	eeting of	of Academi	ic Coun	cil, Aug 201	8			

UNIT I PC HARDWARE AND OVERVIEW

Hardware – BIOS – DOS interaction, POST, Functional and Architecture Block diagram of a PC, Mother Board – I / O slots – Mother Board logics- Memory and I/O map, Peripheral interfacing and controllers- Serial and Parallel interface – CRT Display Adapter – FDC – HDC – PC buses

UNIT II 80186, 80286, 80386 AND 80486 MICROPROCESSORS

80186 Architecture, Enhancements of 80186 – 80286 Architecture – Real and Virtual Addressing Modes – 80386 Architecture – Special Registers – Memory Management – Memory Paging Mechanism – 80486 Architecture – Enhancements – Cache Memory Techniques – Exception Handling – Comparison of Microprocessors (8086 – 80186 – 80286 – 80386 – 80486).

UNIT III PENTIUM MICROPROCESSORS 9

Pentium Microprocessor Architecture – Special Pentium Registers – Pentium Memory Management – New Pentium Instructions – Pentium Pro Microprocessor Architecture – Special features – Pentium II Microprocessor Architecture – Pentium III Microprocessor Architecture – Pentium III Architecture – Pentium IV Architecture – Comparison of Pentium Processors.

UNIT IV COMPUTERISED DATA ACQUISITION AND PROGRAMMING 9

Plug-in-data acquisition and Control Boards, Data acquisition using GPIB and Serial Interfaces and Programming in C, Virtual reality – Multimedia - Telemedicine – Computers in Critically Care Units and radiological centres

UNIT VBIOMETRICS FOR NETWORK SECURITY9

Introduction to Biometrics and its characteristics, Finger print technology, feature extraction and classification, Face recognition and hand geometry - feature extraction and classification, Biometric authentication system

REFERENCES

1. RamachandraLele, Computers in Medicine Progress in Medical Informatics, Tata

9

McGraw Hill Publishing Company, New Delhi, 2005

- 2. N.Mathivanan, PC Based Instrumentation: Concepts and Practice, Prentice Hall of India, New Delhi 2007.
- 3. B.Govindarajalu, IBM PC and Clones: Hardware, Trouble shooting and Maintenance, Tata McGraw Hill Publishing Company, New Delhi, 2005
- 4. Herbert Schildt, The Complete Reference JAVA, Tata McGraw Hill Publishing Company, New Delhi, 2005
- 5. John P Woodward, Biometrics The Ultimate Reference, Dreamtech Publishers, New Delhi, 2003
- 6. Ranjan Parekh, Principles of Multimedia, Tata McGraw Hill Publishing Company, New Delhi, 2006
- 7. Stephen J Bigelow, Trouble shooting, Maintaining and Repairing of PCs, Tata McGraw Hill Publishing Company, New Delhi, 2005

	TISSUE ENGINEERING	L	Т	Р	С
P18PEBM021	Total Contact Hours – 45	3	0	0	3
	Prerequisite course –				
	Course Coordinator Name & Department:- Dr. Vasuk	idevi	R & E	Departi	nent. of Biomedical
	Engineering				
COURSE OBJ	ECTIVES:-				
To study	y the Tissue Exchange and Tissue Development.				
To knov	v the Cell growth and differentiation, Cell and tissue mec	hanisı	n.		
To study	y the cell adhesion, cell migration, cell aggregation and ti	ssue e	quival	lent.	
COURSE OUT	TCOMES (COs)				
CO1 To le	earn objectives of Tissue engineering, Element of Tissue	develo	opmen	t.	
	n the Cell and tissue mechanism, cell adhesion, cell adhesion, cell alent.	migra	tion, o	cell ag	gregationand tissue
CO3 To le	earn Delivery molecular agents in tissue engineering, con	trol re	leaser	agent	s intime and space.
	earn cell interaction with polymer cell, cell interact	ion w	rith po	olymei	insuspension, cell
CO5 Stud	y the Replacement in Tissue structure or Functional Tissu	ie eng	ineeri	ng car	tilage.
CO6 To u	nderstand the tissue generation				
11 0	urse Outcomes with Program outcomes (POs) (1/2/3 india ligh, 2-Medium, 1-Low	cates s	strengt	h of	

1	COs/Pos	1	2	3	4	5	6	7	8	9	10	11	12	PSO1	PSO2
2	CO1	3		3				3			2				
	CO2					2									
	CO3	2		2											
	CO4		1									1			2
	CO5							3							
	CO6	1		2				3							
3	Category	Humanities &	Social Studies (HS)	Basic Sciences (BS)	Engg Sciences (ES)		Professional Core (PC)	Core Elective (CE)		Non-Major Elective (NE)	Open Elective (OE)	Any other	Project/Term	raper/ seminar/ Internship(PR)	
4	Approval	4	7 th M	eeting o	of Aca	demi	ic Coun	cil, Au	g 2018	8		•			

UNIT I FUNDAMENTAL OF TISSUE ENGINEERING 9

Tissue Exchange and Tissue Development, objectives of Tissue engineering, Element of Tissue development.

UNIT II CELLULAR STUDIES

Cell growth and differentiation, Cell and tissue mechanism, cell adhesion, cell migration, cell aggregation and tissue equivalent.

UNIT III TISSUE BARRIERS TO MOLECULAR AND CELLULAR TRANSPORT

9

Cell delivery and recirculation, Delivery molecular agents in tissue engineering, control releaser agents in time and space.

UNIT IV INTRODUCTION TO POLYMERS

Non degrade polymer, Bio degradable polymer, cell interaction with polymer cell, cell interaction with polymer in suspension, cell interaction with gels.

UNIT V APPLICATION OF TISSUE ENGINEERING 9

Artificial organs, synthetic components, Replacement in Tissue structure or Functional Tissue engineering cartilage, Skin, and nerve regeneration.

9

REFERENCES

- 1. W Mark Saltzman Tissue Engineering Engineering principles for design of replacement organs and tissue Oxford University Press inc New York 2004
- 2. Gray E Wnek, Gray L Browlin Encyclopaedia of Biomaterials and Biomedical Engineering Marcel Dekker Inc New York 2004.

	BIOMATERIALS ANDIMPLANTABLE DEVICES	L	Τ	Р	С
P18PEBM022	Total Contact Hours – 45	3	0	0	3
	Prerequisite course – Basic Biomaterials (B.Tech)		1	1	
	Course Coordinator Name & Department:- Ms.Geet	ha & D	Depart	ment.	of Biomedical
	Engineering				
COURSE OBJI	ECTIVES:-				
• To study	about the artificial organs and various medical material	s like i	implar	nt mat	erials,
polymer	ric implants, tissue replacement implants and its applica	tions.	-		
COURSE OUT	COMES (COs)				
CO1 To un	derstand the basic definition and classification of variou	us bion	nateria	als	
CO2 To lea	arn the properties of various biomaterials, metallic impla	ants an	d allo	ys	
CO3 To ap	ply the mechanical properties of various materials in the	erapeu	tic app	plicati	ons
CO4 To ge	t introduced about different artificial organs				

CO	5	Fo und	derst	tand th	ne prop	erties	of bi	o glass,	bio cer	amics	s and bi	opolymers.				
CO	6 7	Го uno	derst	tand th	ne neur	o mus	cular	implan	its							
	Aapping of orrelation)						gram	outcom	es (POs	s) (1/2	2/3 indic	cates streng	th of		_	_
1	COs/Pos		1	2	3	4	5	6	7	8	9	10	11	12	PSO1	PSO2
2	CO1		3	2		3				3			2			
	CO2							2								
	CO3		2			2						2				
	CO4			1												3
	CO5															
	CO6		2			1										
3	Category	_	Humanities &	Social Studies (HS)	Basic Sciences (BS)	Engg Sciences (ES)		Professional Core (PC)	Core Elective (CE)		Non-Major Elective (NE)	Open Elective (OE)	Any other	Project/Term	Paper/ Seminar/ Internship(PR)	
				eth a c		<u> </u>		√	•• •	001						
4	Approval		4	·/" M	eeting o	ot Aca	dem	ic Coun	cil, Aug	g 201	8					
	UNIT	'-I													9	

Definition and classification of Biomaterials, Metallic implant materials- Ceramic implant materials- Polymeric implant materials, composites

UNIT-II

Biocompatibility- interfacial phenomena, Material response function and degradation of materials, in vivo- host response - Methods of test for biological performance.

UNIT-III

Bioelectric effect, Wolff's law. Interface problems with artificial joints and various fixation methods. Failure of implantation materials- metallic corrosion, wear, metallic implant fractures and their impact on biological systems. Orthopaedic implants- Hard tissue replacements- total hip and knee joint replacements

UNIT-IV

PhysioChemical Characteristics of Biopolymers- biodegradable polymers for medical purposessynthetic polymers, biopolymers in Controlled release systems. Artificial skin, surface Modification of biopolymer materials.

UNIT-V

9

9

9

Cardiac Implants, Neuro Muscular Implants, Transcutaneous Implants, Intraocular lenses, Dental implants.

REFERENCES

- 1. Park. J.B. "Biological science and engineering", Plenum Press, 1994.
- 2. Jonathan Black "Biological Performance of Materials', Marcel Dekker", 1981.
- 3. Piskin.E. & Hoffmann.A.S. "Polymeric biomaterials" Martinus Nijihoff pub, 1986
- 4. "Biomaterials", Sujata V Bhat., Narosa Publishing House, New Delhi, 2002
- 5. Park. J.B. "Biomaterials: An Introduction", CBS Publishers, 2007.
- 6. F.H. Silver, "Biomaterials, Medical Devices and Tissue Engineering: An Intergrated Approach" 1st Edn., Chapman & Hall, London, 1994.
- 7. Buddy Ratner *etal.*, "Biomaterials Science An Introduction to Materials in Medicine", Academic Press, San Diego, 2004.

]	PHYSI	OLO	GIC	AL MO	DELI	NG		L	T	P		С	
P181	PEBM	123	Tota	l Con	tact Ho	urs – 4	45					3	0	0		3	
1 101)20	Р	rerequ	uisite co	ourse -	- basi	ic know	vledge a	anaton	ny& ph	ysiolo	gy (B	.Tech	/B.E)		
			C	ourse	Coordi	nator	Nam	e & De	partme	nt:- M	r.Kishc	ore K	& Dej	partme	ent. of	Biome	dical
				ngine	<u> </u>												
C	OURS		-														
											es appli			zing a	ny giv	en syst	em
										n and	frequer	ncy do	main				
	• T	o study	the s	stabili	ty analy	sis of	the g	given sy	ystem								
	OURS	F OUT		MES ($(\mathbf{CO}_{\mathbf{S}})$												
CO1					, ,	l frea	uenc	v dom	ains of	f the	given	systen	n usir	ng dif	ferent	mathe	ematical
COI	-	techn			ine and	i neq	uene	y dom		uic	given	system	u usii	ig un	Terein	. main	matical
CO2	2		1		s of con	trol s	vsten	18									
CO3					ency res												
				-	•	-											
CO4				-	em def				-								
CO5	5	Study	y the	model	l of eye	, respi	rator	y syste	m, etc								
CO6	5	To U	nders	stand t	the wor	king o	of phy	siologi	ical mo	del							
Μ	apping	of Cou	irse (Dutcor	nes wit	h Prog	gram	outcon	nes (PC	s) (1/2	2/3 indi	cates s	strengt	h of			
co	orrelatio	on) 3-H	ligh, í	2-Med	lium, 1-	-Low			,				U				
1 0	COs/Po	S	1	2	3	4	5	6	7	8	9	10		11	12	PSO1	PSO2
2 0	CO1		2		2				3					2			
	CO2		1			3			1	2		1				1	
	CO3		1	2			2		3	1	3	1		2		1	
	CO4				2											1	2
	CO5		3		2		2	2						2		1	
	CO6		1		2			2								1	

3	Category	Humanities & Social Studies (HS)	Basic Sciences (BS)	Engg Sciences (ES)	Professional Core (PC)	Core Elective <(CE)	Non-Major Elective (NE)	Open Elective (OE)	Any other	Project/Term Paper/ Seminar/ Internship(PR)
4	Approval	47 th M	eeting of	of Academi	ic Coun	cil, Aug 201	8			

UNIT I INTRODUCTION 9

System Concept, System Properties, Piece-Wise Linear Approximation, Electrical Analog for Compliance, Thermal Storage, Mechanical Systems, Step response of a Resistance/Compliant Systems, Pulse Response of First Order System.

UNIT II TRANSFER FUNCTION

System as an Operator use of Transfer Function, Bio Engineering of a Coupled System, Example of Transformed Signals and Circuits for the Transfer Function with Impedance Concept, Prediction of Performance.

UNIT III PERIODIC SIGNALS

Sinusoidal Functions, Sinusoidal Analysis of Instrumentation System, Evaluation of Transfer Function s from Frequency Response, Relationship between Phase Lag and Time Delay Transient Response of an Undamped Second Order system, General Description of Natural Frequency Damping, Physical Significance of Under Damped Responses.

UNIT IV FEEDBACK

Characterization of physiological feedback systems, uses and testing of system stability.

UNIT V SIMULATION OF BIOLOGICAL SYSTEMS

Simulation of Skeletal muscle servomechanism, thermo Regulation, cardiovascular control System, Respiration controls, Occulo Motor System, Endocrine control system and Modeling of receptors.

REFERENCES

- 1. William B. Blesser, A System Approach to Biomedicine, McGraw Hill Book Co, New York, 1969.
- 2. ManfreoClynes and John H. Milsum, Biomedical Engineering System, McGraw Hill and Co, New York, 1970.
- 3. Douglas S. Rigg, Control Theory and Physiological Feedback Mechanism, The William

9

9

9

0

and Wilkins Co, Baltimore, 1970 .

- 4. Richard Skalak and ShuChien, Hand Book of Biomedical Engineering, McGraw Hill and Co, New York, 1987.
- 5. Michael C.K. Khoo, "Physiological Control System" Analysis, Simulation and Estimation"- Prentice Hall of India, New Delhi, 2001

			BIO MEMS									L	Т	P		С		
P18PEBM031		Total Contact Hours – 45									3	0	0		3			
		Prerequisite course – Knowledge in Microprocessor (B.Tech/B.E)																
			Course Coordinator Name & Department:- Mr.Prasath S. & Department. of Biomedical Engineering															
	COURS	E OBJ		0	<u> </u>													
To study the Working principle of Microsystems.																		
	• T	o knov	v Sys	tem m	odeling	and p	orope	rties of	materia	als.								
	• T	o study	y the	Funda	mental	princi	ple o	f MOE	MS tech	nnolo	gy.							
	COURS	E OUI	FCO I	MES (COs)													
CO1 To 1			learn objectives of materials for MEMS and Microsystems and micromachining.															
CO2 Lea		Lear	earn the Peltier effect heat pumps and thermal flow sensor.															
CO3 To		To le	learn digital micromirror devices, light detectors, optical switch.															
CO4 To		To le	learn expression for liquid flow in a channel.															
CO5 St		Stud	dy the micro system approaches to polymerase chain reaction (PCR).															
CO6		To u	o understand the applications of mems in medical field															
	/apping orrelation						gram	outcom	es (POs	s) (1/2	2/3 indio	cates s	trengt	h of				
1	COs/Po	s	1	2	3	4	5	6	7	8	9	10		11	12	PSO1	PSO2	
2	CO1		3	3	2				3			2	2					
	CO2					3				3				2	3			
	CO3			2				2	3			2	2					
	CO4				2					3						_	3	
	CO5		3					2	2					2	3	_		
2	CO6			2		2			1									
3	Categor	У	æ	ies	es	es (ES)			a			e			rm inar/ PR)			
			Humanities &	Social Studies (HS)	Basic Sciences (BS)	Engg Sciences (ES)		Professional Core (PC)	Core Elective (CE)		Non-Major Elective (NE)	Open Elective (OE)		Any other	Project/Term	Paper/ Seminar/ Internship(PR)		
			Η	Š	Basic (BS)	Enξ		Pro Coi	Core (CE)		Noi Ele	Oper (OE)	/	Any	L ,	Pa In		

						✓			
4	Approval	47 th M	eeting o	of Academ	ic Coun	cil, Aug 201	8		

UNITI MEMS AND MICROSYSTEMS

Working principle of Microsystems, materials for MEMS and Microsystems, micromachining, System modeling and properties of materials

UNIT II MICROSENSORS AND ACUATORS

Mechanical sensors and actuators – beam and cantilever, piezoelectric materials, thermal sensors and actuators- micromachined thermocouple probe, Peltier effect heat pumps, thermal flow sensors, Magnetic sensors and actuators- Magnetic Materials for MEMS, Devices

UNIT III MICRO OPTO ELECTRO MECHANICAL SYSTEMS

Fundamental principle of MOEMS technology, light modulators, beam splitter, microlens, digital micromirror devices, light detectors, optical switch

UNIT IV MICROFLUIDIC SYSTEMS

Microscale fluid, expression for liquid flow in a channel, fluid actuation methods, dielectrophoresis, microfluid dispenser, microneedle, micropumps-continuous flow system

UNIT V BIOMEMS

Drug delivery, micro total analysis systems (MicroTAS) detection and measurement methods, microsystem approaches to polymerase chain reaction (PCR), DNA hybridization, Electronic nose, Bio chip

REFERENCES

- 1. Tai Ran Hsu, "MEMS and Microsystems design and manufacture", Tata McGraw Hill Publishing Company, New Delhi, 2002
 - 2. NitaigourPremchandMahalik, "MEMS", Tata McGraw Hill Publishing Company, New Delhi, 2007
 - 3. Wanjun Wang, Steven A.Soper "BioMEMS- Technologies and applications", CRC Press, Boca Raton, 2007
 - 4. Abraham P. Lee and James L. Lee, BioMEMS and Biomedical Nano Technology, Volume I, Springer 2006.

9

9

9

9

				HEA	LTH H			L AND EMEN	EQUII T	PME	NT	L	Т	Р		С	
P18	SPEBM	J32	Tota	l Con	tact Ho	urs – 4	45					3	0	0		3	
			P	rerequ	isite co	ourse -	- Kno	owledge	e in Mic	ropro	ocessor	(B.Tec	h/B.E	E)			
			C	Course	Coordi	nator	Nam	e & De	partmer	nt:- D	r.Vasuk	i R. &	Depa	artmer	nt. of l	Biomed	ical
			_	ngine													
C									ation of	6 1		a data	:1 a d a			L:11 :.	a alta da
											pitals in departm						
				-	ortive s	-			ung e	erj	aopartin	0110 011	ut 15 1		cu 00		lilloui
	• T	o intro	duce	the e	eauipm	ent m	ainte	nance	manage	ment	t skills	and h	ow to	o prot	ect e	nuinme	nt from
					erferend									, h.o.		1	
C	COURS	E OUI	CON	MES ((COs)												
CO	1	Expe	rt in	unders	standing	g the v	ariou	is healt	h polici	es							
CO	2	Plan	ning a	activiti	ies at he	ealth c	care c	entres.									
CO	3	Equi	pmen	ıt insta	llation	,servi	ce &	calibrat	tion nee	ds							
CO	4	Orga	nizin	g maiı	ntenanc	e oper	ratior	ıs									
CO	5	Func	tion o	of a cli	inical e	nginee	er in a	a hospit	al								
CO	6	Lear	ningt	the ho	spital sa	afety a	and a	pplicaic	ons								
Ν	/Iapping	of Cou	irse (Dutcor	nes wit	h Prog				s) (1/	2/3 indi	cates s	trengt	h of			
	orrelatio COs/Po		$\frac{1 \text{gn}}{1}$	2-14160	3		5	(7	0	0	10		11	10	PSO1	PSO2
			_		_	4	3	6	7	8	9	10		11	12	PS01	P302
2	CO1 CO2		3	3	2	3		3	3		2	2)	3		_	
	CO2 CO3			2		5	2	3	5		2			5		_	
	CO4				2				3							2	
	CO5		3				2	2				2	2	3			
	CO6		2	2		_	2							2			
3	Categor	у	8	Sč		Engg Sciences (ES)									u ,	ar/ R)	
			Humanities &	Social Studies (HS)	Basic Sciences (BS)	nces		al	ive		r (E)	tive			Project/Term	Paper/ Seminar/ Internship(PR)	
			anit	al Stu (HS)	Scie	cie		PC)	llect		lajo e (D	Elec		her	ect/	/ Se Ishi	
			lum	ocia (sic (50		Professional Core (PC)	Core Elective (CE)		Non-Major Elective (NE)	Open Elective (OE)		Any other	Proje	uper. nteri	
			Η	Ň	Basic (BS)	En		Prc Col			Ele No	Oper (OE)	/	An	<u> </u>	F2 II	
			1						1								

4 App	oval	47 th Meeting of Academic Council, Aug 2018

UNIT IHEALTH SYSTEM

Health organisation of the country, the State, the Cities and the Region, Health Financing System, Organisation of Technical Section

UNIT II HOSPITAL ORGANISATION AND MANAGEMENT

Management of Hospital Organisation, Nursing Sector, Medical Sector, Central Services, Technical Department, Definition and Practice of Management by Objective, Transactional Analysis Human Relation in Hospital, Importance of Team Work, Legal aspect in Hospital Management.

UNIT III REGULATORY REQUIREMENT AND HEALTH CARE CODES 9

FDA Regulation, Joint Commission of Accreditation for Hospitals, National Fire Protection Association Standard, IRPQ.

UNIT IV EQUIPMENT MAINTENANCE MANAGEMENT

Organising Maintenance Operations, Paper Work Control, Maintenance Job Planning, Maintenance Work Measurement and Standards, Preventive Maintenance, Maintenance Budgeting and Forecasting, Maintenance Training, Contract Maintenance.

UNIT V TRAINED TECHNICAL PERSONNEL

Function of Clinical Engineer, Role to be performed in Hospital, Manpower Market, Professional Registration, and Structure in Hospital.

REFERENCES

- 1. Cesar A.Caceres and Albert Zara, The Practice of Clinical Engineering, Academic Press, New York, 1977.
- 2. Webster.J.G. and Albert M.Cook, Clinical Engineering Principles and Practices Prentice Hall Inc. ,Englewood Cliffs, New Jersey, 1979.
- 3. Hans Pfeiff, VeraDammann (Ed.), Hospital Engineering in Developing Countries, Z Report, Eschbom, 1986
- 4. Jacob Kline, Handbook of Bio Medical Engineering, Academic Press Inc. SanDeigo1988
- 5. R.C.Goyal, Human Resource Management in Hospital, Prentice Hall of India, 3^{rd'} edition,2000.
- 6. Syed Amin Tabish "Hospital and Health services Administration Principles and Practices Oxford Press New Delhi 2001

TELEHEALTH TECHNOLOGY	L	Т	Р	С
Total Contact Hours – 45	3	0	0	3

9

9

9

P18	BPEBN	10.	33	P	rerequ	isite co	ourse -	- Kno	owledge	e in Mic	ropro	cessor	(B.Tech/B.	E)			
					lourse Ingine		nator	Nam	e & Dej	partmer	it:- D	r.Vasuk	i R. & Dep	artmer	nt. of l	Biomed	lical
0	COUR	SE	OBJ	ECT	IVES	:-											
п	1	tel To	emedio know	cine	systen	n, Teler	nedici	ine.					Inctional d	C	of		
	COUR	SE	OUT	COI	MES (COs)											
CO	1		To lea	arn o	bjecti	ves of 7	Tele h	ealth	, Tele ca	are and	Orga	ns of te	lemedicine.	,			
CO	2												a, Data con communica		cation	s and	
CO	3		To le phone				CP/IP,	ISO	-OSI, S	tandard	s to f	followe	d DICOM,	HL7,	H. 32	Oseries	(Video
CO	4		To lea	arn E	Basic p	oarts of	telera	diolo	gy syste	em.							
CO	5		Intro	lucti	on to 1	obotics	surge	ery, t	ele surg	ery, Te	le car	diology	and Teleor	ncolog	у		
CO	6		To un	ders	tand tl	ne appli	ication	ns of	telemed	licine							
						nes with lium, 1-		gram	outcom	es (POs	s) (1/2	2/3 indi	cates streng	th of			
1	COs/P	os		1	2	3	4	5	6	7	8	9	10	11	12	PSO1	PSO2
2	CO1			2		2				3				2			
	CO2						3			-	2						
	CO3				2	-		2		3		3		2		2	
	CO4 CO5			2		$\frac{2}{2}$		2	2					2			
	CO3 CO6			2	2	Z	3	2	Δ		2			2			
3	Catego	ory	,				ES) c				2						
				Humanities &	Social Studies (HS)	Basic Sciences (BS)	Engg Sciences (Professional Core (PC)	Core Elective (CE)		Non-Major Elective (NE)	Open Elective (OE)	Any other	Project/Term	Paper/ Seminar Internship(PR)	
					41-												
4	Appro	va	1	4	47 th M	eeting of	of Aca	dem	ic Coun	cil, Aug	g 201	8					

UNIT I TELEMEDICINE AND HEALTH

9

History and Evolution of telemedicine, Functional diagram of telemedicine system,

Telemedicine, Tele health, Tele care, Organs of telemedicine, Global and Indian scenario, Ethical and legal aspects of Telemedicine - Confidentiality, Social and legal issues, Safety and regulatory issues, Advances in Telemedicine.

UNIT II TELEMEDICAL TECHNOLOGY

Principles of Multimedia - Text, Audio, Video, data, Data communications and networks, PSTN, POTS, ANT, ISDN, Internet, Air/ wireless communications: GSM satellite, and Micro wave, Modulation techniques, Types of Antenna, Integration and operational issues, Communication infrastructure for telemedicine – LAN and WAN technology. Satellite communication. Mobile hand held devices and mobile communication. Internet technology and telemedicine using world wide web (www). Video and audio conferencing.clinical data–local and centralized

UNIT III TELEMEDICAL STANDARDS

Data Security and Standards: Encryption, Cryptography, Mechanisms of encryption, phases of Encryption. Protocols: TCP/IP, ISO-OSI, Standards to followed DICOM, HL7, H. 320 series (Video phone based ISBN) T. 120, H.324 (Video phone based PSTN), Video Conferencing, Real-time Telemedicine integrating doctors / Hospitals, Clinical laboratory data, Radiological data, and other clinically significant biomedical data, Administration of centralized medical data, security and confidentially of medical records and access control, Cyber laws related to telemedicine.

UNIT IV MOBILE TELEMEDICINE

Tele radiology: Definition, Basic parts of teleradiology system: Image Acquisition system Display system, Tele pathology, multimedia databases, color images of sufficient resolution, Dynamic range, spatial resolution, compression methods, Interactive control of color, Medical information storage and management for telemedicine- patient information medical history, test reports, medical images diagnosis and treatment. Hospital information system - Doctors, paramedics, facilities available.Pharmaceutical information system.

UNIT V TELEMEDICAL APPLICATIONS

Telemedicine access to health care services – health education and self care. \cdot Introduction to robotics surgery, telesurgery. Telecardiology, Teleoncology, Telemedicine in neurosciences, Electronic Documentation, e-health services security and interoperability., Telemedicine access to health care services – health education and self-care, Business aspects - Project planning and costing, Usage of telemedicine.

REFERENCES

- 1. Norris, A.C. Essentials of Telemedicine and Telecare. Wiley (ISBN 0-471-53151-0), 2002
- Wootton, R., Craig, J., Patterson, V. (Eds.), Introduction to Telemedicine. Royal Society of Medicine Press Ltd (ISBN 1853156779), 2006
- O'Carroll, P.W., Yasnoff, W.A., Ward, E., Ripp, L.H., Martin, E.L. (Eds), Public Health Informatics and Information Systems. Springer (ISBN 0-387-95474-0), 2003
- 4. Ferrer-Roca, O., Sosa-Iudicissa, M. (editors), Handbook of Telemedicine. IOS

0

9

9

9

Press (Studies in Health Technology and Informatics, Volume 54). (ISBN 90-5199-413-3), 2002.

- 5. Simpson, W. 2006. Video over IP. A practical guide to technology and applications. Focal Press (Elsevier). ISBN-10: 0-240-80557-7
- 6. Bemmel, J.H. van, Musen, M.A. (Eds.) (1997). Handbook of Medical Informatics. Heidelberg, Germany: Springer. (ISBN 3-540-63351-0)
- Wootton, R., Craig, J., Patterson, V. (Eds.), Introduction to Telemedicine. Royal Society of Medicine Press Ltd (ISBN 1853156779), 2006
- O'Carroll, P.W., Yasnoff, W.A., Ward, E., Ripp, L.H., Martin, E.L. (Eds), Public Health Informatics and Information Systems. Springer (ISBN 0-387-95474-0), 2003
- Ferrer-Roca, O., Sosa-Iudicissa, M. (editors), Handbook of Telemedicine. IOS Press (Studies in Health Technology and Informatics, Volume 54). (ISBN 90-5199-413-3), 2002.
- 10. Simpson, W. 2006. Video over IP. A practical guide to technology and applications. Focal Press (Elsevier). ISBN-10: 0-240-80557-7
- 11. Bemmel, J.H. van, Musen, M.A. (Eds.) (1997). Handbook of Medical Informatics. Heidelberg, Germany: Springer. (ISBN 3-540-63351-0)

	ADVANCED NEURAL COMPUTING	L	Т	Р	C
P18PEBM041	Total Contact Hours – 45	3	0	0	3
	Prerequisite course – knowledge on neural networks	(B.Te	ch/B.I	E)	
	Course Coordinator Name & Department:- Mr.Kisho Engineering	ore K a	& Dep	artme	nt. of Biomedical
COURSE OBJ	ECTIVES:-				
	rse will teach a variety of contemporary approaches to the theory underlying these approaches.	neura	l netw	orks a	and
of neura • Addition	roaches to be covered will include such things as biologi l networks, Perception, MLPs, RBFN, SVM and compet hally, a brief introduction to optimization techniques usir ions will be given.	itive le	earnin	g.	
COURSE OUT	TCOMES (COs)				
	n completion of this course student gains knowledge abo for biomedical signal analysis and Medical image analys		ious n	eural	networks that can be
CO2 Abou	at the genetic algorithms as well as techniques used in its	imple	ementa	tion	
CO3 Exam	ninations of human central nervous systems inspired the	conce	pt of a	rtifici	al neural network.
CO4 Appl					
CO5 Capa	bility of approximating non linear functions of their				
CO6 To U					

	Apping of Cou orrelation) 3-H					gram	outcom	es (PO	s) (1/2	2/3 indic	cates streng	th of				
	COs/Pos	1	2	3	4	5	6	7	8	9	10	11	12	PSO1	PSO2	
2	CO1	3	3	2			3			2						
	CO2				3			3			2	3				
	CO3		2			2	3			2						
	CO4			2				3						3		
	CO5	3				2	2				2	3				
	CO6		2			2		2				3				
3	Category	Humanities &	Social Studies (HS)	Basic Sciences (BS)	Engg Sciences (ES)		Professional Core (PC)	Core Elective (CE)		Non-Major Elective (NE)	Open Elective (OE)	Any other	Project/Term Paper/ Seminar/ Internship(PR)			
								\checkmark								
4	Approval		47 th M	leeting	of Ac	adem	ic Cou	ncil, Au	ıg 201	8						

UNIT I FUNDAMENTAL CONCEPTS AND MODELS

OF ARTIFICIAL NEURAL SYSTEMS

Biological Neurons and their artificial models, Models of Artificial Neural Networks, Learning and Adaptation, Neural Network Learning Rules, Single Layer Perceptron Classifiers.

UNIT II BPN AND BAM

Back Propagation Network, Generalized Delta Rule, BPN Application, Associative Memory Definition, BAM, Hopfield Memory, Simulated Annealing-Boltzmann Machine.

UNIT III OTHER NETWORKS

Counter Propagation Network, Feature Mapping, Self-Organizing Feature Maps, Adaptive Resonance Theory (ART) Network Descriptions,

UNIT IV GENETIC ALGORITHMS & IMPLEMENTATION TECHNIQUES 10

The Appeal of Evolution, Search Spaces and Fitness Landscapes, Elements of Genetic Algorithms, Data Structures, Adaptive Encoding. Selective Methods, Genetic Operators, Fitness Scaling

UNIT V ADVANCES AND APPLICATIONS

Support Vector Machines, R B F Network, Neocognitron Evolving neural networks using GA, Applications of ANN in biomedical signal analysis and Medical image analysis

REFERENCES

9

9

9

- 1. Philip D.Wasermann, Advanced Methods in neural Computing, Van NostrandReinhold,NewYork 1993.
- 2. David Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning, Addison Wesley USA,1997.
- 3. Melanie Mitchell, An Introduction to Genetic Algorithms: Prentice Hall of India, New Delhi 1998.
- 4. Simon Haykins, Neural Networks ,Prentice Hall international lnc, 1999.
- 5. James A Freeman and David M. Skapura, Neural Networks, Addison Wesley, India 1999.

					N	UCLE	CAR	MEDI	CINE			L	Τ	Р		С	
P181	PEBMO	42	Tota	l Cont	tact Ho	urs –	45					3	0	0		3	
			P	rerequ	isite co	ourse -	- Kno	owledge	e in Bic	medic	al Equi	pmen	ts (B.	Fech/I	B.E Le	evel)	
			C	ourse	Coordi	nator	Nam	e & De	partme	nt:- D	r.Emers	on So	lomor	n F. &	Depa	rtment.	of
					lical Er	iginee	ring										
C	OURSE	C OBJ	ECT	IVES	:-												
																	nedicine
		-			•				student	ts to le	earn the	e basic	e princ	ciples	of dif	ferent	imaging
					nuclea	ar med	licine	e									
	OURSE																
CO1		To understand the basic physics of various imaging modalities in nuclear medicine.															
CO2	2	To gain knowledge about various detectors used in nuclear medicine															
CO3	;	To gain knowledge in maintenance, handling and operation of the various															
		Equip	ment	s in th	is field	•											
CO4	ŀ	To ur	ders	tand th	ne basio	c work	king p	orincipl	e of En	nissior	n Tomo	graph	у.				
CO5	5	To ur	ders	tand tl	ne basio	c phys	ics of	f variou	ıs imag	ing							
CO6	5	To le	arn tl	ne app	licatior	ns of n	uclea	ar medi	cine								
Μ	apping	of Cou	rse (Outcon	nes wit	h Prog	gram	outcon	nes (PO	s) (1/2	2/3 indi	cates s	strengt	h of			
co	orrelatio	n) 3-H	igh, 2	2-Med	ium, 1-	Low							-				
1 (COs/Pos	5	1	2	3	4	5	6	7	8	9	10		11	12	PSO1	PSO2
2 0	CO1 3 2 3 3												2				
	CO2							2									
	CO3		2			2							2			1	
	CO4				1											1	
	CO5					3				3							
	CO6		3		2	3				3				2			

3	Category	Humanities & Social Studies (HS)	Basic Sciences (BS)	Engg Sciences (ES)	Professional Core (PC)	Core Elective (CE)	Non-Major Elective (NE)	Open Elective (OE)	Any other	Project/Term Paper/ Seminar/ Internship(PR)
					v					
4	Approval	47 th M	eeting (of Academi	ic Coun	cil, Aug 201	8			

UNIT I – BASIC PHYSICS BEHIND RADIOACTIVITY

Physics of Radioactivity: Radionuclide Decay Terms and Relationships – Activity – Physical half Life – Fundamental Decay Equation, Nuclear Transformation – Alpha Decay, Beta-Minus Decay-Beta Plus – Electron Capture – Isomeric Transition – Decay Schemes

UNIT II – PRODUCTION OF RADIOACTIVE ELEMENTS

Radionuclide Production: By cyclotron, nuclear reactor, neutron activation method, and generators, Radiopharmaceuticals – Characteristics, applications, quality control and regulatory issues in medical imaging, Radiopharmaceutical mechanisms of localization

UNIT II I RADIOACTIVITY DETECTORS

Radionuclide detection and measurement - Type of detectors – pulsed and current mode - spectroscopy, Gas Filled detectors, Scintillation detectors, Semiconductor detectors, Pulse height spectroscopy, Non– imaging detector applications, Counting statistics

UNIT IV – NUCLEAR IMAGING

Planar Nuclear Imaging: Anger Scintillation Camera – Design and principles of operationperformance – design factors, Computers in Nuclear Imaging – Digital image formats – image acquisition – Image processing in nuclear medicine

UNIT V – EMISSION TOMOGRAPHY AND APPLICATIONS

Nuclear Imaging Emission Tomography: Focal plane tomography - Single photon emission computed tomography (SPECT) – image acquisition – Image reconstruction – attenuation correction in SPECT, Positron emission tomography – Design and principles of operation – 2-D and 3-D acquisition – Comparison of SPECT and PET – Combines X-ray CT and SPECT – Applications: Whole body, Heart and Brain. 40

REFERENCES

1. Jerrold T Bushberg, J.Anthony Seibert, Edwin M Leidholdt, John M Boone, Lippincott, "The Essential Physics of Medical Imaging" Williams & Wilkins, 3rd edition, 2011.

2. S Webb, "The Physics of Medical Imaging", Adam Highler, Bristol Published by CRC Press, first edition 1988.

3. Webb's, "Physics of Medical Imaging", Taylor and Francis Group", CRC Press,2nd edition, 2012.

4. R. S. Khandpur "Handbook of Bio-Medical Instrumentation", Tata McGraw Hill, 2nd edition,

9

9

9

9

2003.

					В	RAIN	CON	TRC	L INT	ERFA	CES		L	Т	Р		С	
Р	18PEB	RM	043	Tota	al Con	tact Ho	urs – 4	45					3	0	0		3	
				F	Prerequ	isite co	ourse -	- kno	wledge	on neu	ral ne	tworks	(B.Tec	ch/B.H	E)			
					Course	Coordi	nator	Nam	e & De	partmei	nt:- M	s.Kripa	N. &	Depa	rtmen	t. of B	iomedi	cal
					Engine	0												
	COUR																	
	•		•		-						-	es appli		•	zing ai	ny giv	en syst	em
	•				•	U	•				n and	frequen	cy doi	nain				
	COUR						/818-01	the g	given sy	stem								
CC							quisiti	on ,F	re-proc	essing,	Hard	ware an	d Soft	ware	and A	rtifact	S	
CC	02		Study	the	Case S	Study o	f Brai	n Ac	tuated (Control	of Kh	epera N	Iobile	Robo	ot.			
CC						•						1				okedI	Potentia	l Based
					mpone													
CC)4		To le	arn I	Laplac	ian Filte	ers the	eir Li	near an	d Non-l	inear	Feature	s.					
CC)5		To le	arn V	Vector	Quanti	zation	and	Gaussia	an Mixt	ure M	Iodeling	g.					
CC	06		To U	nder	stand t	he Inte	rface l	betw	een the	brain ir	instr	uments	in exte	ernal	enviro	nemn	t	
r	Mappir	١g	of Cou	rse (Outcor	nes wit	h Pros	ram	outcom	nes (PO	s) (1/2	2/3 indi	cates s	trengt	h of			
						lium, 1-		>		(-) (-/-			8				
1	COs/I	Pos	5	1	2	3	4	5	6	7	8	9	10		11	12	PSO1	PSO2
2	CO1			3	3	2			3			2						
	CO2						3			3			2	2	3			
	CO3				2			2	3			2						
	CO4					2				3							2	
	CO5			3				2	2				2		3			
	CO6					2				3			2	2				
3	Categ	or	У	Humanities &	Social Studies (HS)	Basic Sciences (BS)	Engg Sciences (ES)		Professional Core (PC)	Core Elective (CE)		Non-Major Elective (NE)	Open Elective (OE)	×	Any other	Project/Term	raper/ Semmar/ Internship(PR)	
				<u> </u>	+h-													
4	Appro	DV8	ıl	4	47 ^{tn} M	eeting o	of Aca	ıdem	ic Coun	icil, Au	g 201	8						

Concept of BCI – Invasive and Non-invasive Types – EEG Standards – Signal Features – Spectral Components - EEG Data Acquisition - Pre-processing - Hardware and Software - Artifacts - Methods to Remove - Near Infrared BCI.

UNIT II **BCI APPROACHES**

9

Mu Rhythm – Movement Related EEG Potentials – Mental States – Visual Evoked Potential Based – P300 component.

EEG FEATURE EXTRACTION METHODS 9 UNIT III

Time/Space Methods - Fourier Transform - Wavelets - AR models - Band pass filtering -PCA – Laplacian Filters – Linear and Non-linear Features.

UNIT IV EEG FEATURE TRANSLATION METHODS

9

LDA - Regression - Memory Based - Vector Quantization - Gaussian Mixture Modeling -Hidden Markov Modeling.

UNIT V CASE STUDY

9

Case Study of Problems in BCI Competition III(2005) – Dataset I, II, III, IV and V – Solutions. Case Study of Brain Actuated Control of Khepera Mobile Robot.

REFERENCES:

- 1. Special Issue on Brain Control Interfaces, IEEE Transactions on Neural Systems and Rehabilitation Engineering, Vol 14, June 2006.
- 2. Andrew Webb, "Statistical Pattern Recognition", Wiley International, Second Edition. 2002

3. R.Spehlmann, "EEG Primer", Elsevier Biomedical Press, 1981. ArnonKohen,

"Biomedical Signal Processing", Vol I and II, CRC Press Inc, ocaRato, Florida.

- 4. Bishop C.M, "Neural Networks for Pattern Recognition", Oxford, Clarendon Press, 1995
- 5. TorstenFelzer, "On the possibility of Developing a Brain Computer Interface", Technical Report, Technical University of Darmstadt, Germany, 2001.

	PRINCIPLES OF GENETIC ANALYSIS	L	Т	Р	С
	Total Contact Hours – 45	3	0	0	3
P18PEBM051	Prerequisite course – Basic Knowledge on genetic (B	B.Tech	/B.E)		
	Course Coordinator Name & Department:- Dr.R. Vas	sukide	evi & I	Depart	tment. of
	Biomedical Engineering				
COURSE OBJ	ECTIVES:-				
To study	the Pattern of inheritance and Chromosomal basis of inl	neritar	nce.		
To know	DNA sequencing, DNA Amplification.				

	•]	Fo st	udy t	he I	Protein	n synthe	esis ar	nd reg	gulation	of gen	e exp	ression.					
	COURS	SE O	UTC	CON	MES (COs)											
CO	1	To	o lear	rn o	bjecti	ves of C	Chrom	loson	ne mapp	ping by	recor	nbinatio	on , Geneti	ics of Ba	acteri	a and v	iruses.
CO	2		earn ybridi			A struc	ture	and	replicat	ion, D	NA	sequenc	ing, DNA	A Amp	lificat	ion an	d DNA
CO	3	To	o lear	rn C	Bene is	solation	and r	nanip	oulation								
CO	4	To	o leai	rn C	Genetio	c basis o	of dev	elopi	ment.								
CO	5	St	tudy (the	Quant	itative	Genet	ics aı	nd Evol	ution G	eneti	cs.					
CO	6	Т	o un	ders	stand t	he vari	ous G	enon	nic expr	ressions							
с	orrelati	on) 3	To understand the various Genomic expressions of Course Outcomes with Program outcomes (POs) (1/2/3 indicates strength of 1 2 3 4 5 6 7 8 9 10 11 12 PSO1 PSO2														
1	COs/Pe	OS		1	2	3	4	5	6	7	8	9	10	11	12	PSO1	PSO2
2	CO1			3			2	3		2			2				
	CO2					2											
	CO3			2			3			-			2			2	
	CO4 CO5			2				3		3			2			3	
	CO5 CO6			3 2		2		3					3			_	
3	Catego	ry			Social Studies (HS)	Basic Sciences (BS)	Engg Sciences (ES)		Professional Core (PC)	Core Elective (CE)		Non-Major Elective (NE)	Open Elective (OE)	Any other	Project/Term	Paper/ Seminar/ Internship(PR)	
			_		S	Ba (B	En		Pro Co	Core (CE)		Ele	<u>d</u> 0)	An			
4	Approv	val		4	7 th M	eeting o	of Aca	demi	ic Coun	cil, Au	g 201	8					

UNIT I INHERITANCE - GENETIC ANALYSIS

Pattern of inheritance, Chromosomal basis of inheritance, Chromosome mapping by recombination, Genetics of Bacteriaand viruses.

UNIT II DNA AND PHENOTYPE

From Gene to Phenotype, DNA structure and replication- DNA sequencing, DNA Amplification, DNA Hybridisation and DNA Polymorphism, RNA transcription and processing, Protein synthesis and regulation of gene expression.

UNIT III GENOME STRUCTURE AND GENETIC ENGINEERING

Gene isolation and manipulation, Genomics, mutations, repair and recombination, site directed

9

9

mutagenesis, large-scale chromosomal changes and genetic polymorphism.

UNIT IV GENETIC PROCESSES

Gene function, Genetic organization, Genetic regulation, normal and cancer cells, Genetic basis of development

UNIT V IMPACT OF GENETIC VARIATION

Population Genetics, Quantitative Genetics, Evolution Genetics.

REFERENCES

- 1. Watson. J. etal, "Molecular Biology of the Gene ", 5th Edition, Pearson Publication, 2004.
- 2. Griffiths, Wesslers, Lewontin, Bart Gel, Suzuki, Miller "Introduction to Genetics Analysis", W.H Freeman & company, New York 8th Edition 2005.
- 3. Glick, B.R and J.J Pasternak "Molecular Biotechnology", Principles and application of Recombinant DNA" 3rd Edition ASM Press, 2003
- 4. Karp, Gerald." Cell and Molecular Biology". Concepts and Experiments, 4th Edition, John Wiley Sons, 2005.
- 5. Weaver. R.F. "Molecular Biology "3rd Edition, McGraw Hill, 2005.
- 6. Tom Strachan, Andrew P Read "Human molecular Genetics" 3rd Edition, Garland Publishing 2004.

	HUMAN ASSIST DEVICES	L	Т	Р	С						
P18PEBM052	Total Contact Hours – 45	3	0	0	3						
	Prerequisite – basic knowledge signal processing	(B.Tech	/B.E)	1							
	Course Designed by – Dept. of Biomedical Engine	eering									
COURSE OF	BJECTIVES:-	TIVES:-									
To kno biosign	ow the various biopotential recordings so as to enable strainals.	idents to	o recor	d vari	ous						
	by the various functional blocks present is cardiac car ndle these equipments with care and safety.	e units s	so that	the s	tudents						
	velop an understanding of the physiotherapy and diath t can learn to operate.	ermy ec	quipmo	ent so	that the						
	dy the concept of various assist devices so as to enabl sist devices.	e the stu	idents	to de	velop						
• To intr	oduce the recent trends in field of diagnostic and therap	eutic eq	uipme	nts.							
COURSE OU	UTCOMES (COs)										
CO1 Exp	lain about measurements of parameters related to respiratory	system									
CO2 Des	cribe the measurement techniques of sensory responses										

9

CO	3	Analyz	ze dif	ferent	types an	d uses	of di	athermy	units							
CO	4	Discus	s ultr	asound	l imagin	g tech	nique	s and its	suseful	ness in	diagnos	is				
CO	5	Outline	e the	importance of patient safety against electrical hazard												
CO	6	Explai	n abo	out mea	sureme	nts of j	paran	neters re	lated to	respira	atory sys	tem				
		g of Cou on) 3-Hi					gram	outcom	es (PO	s) (1/2	2/3 indic	cates strengt	th of			
1	COs/Po	DS	1	2	3	4	5	6	7	8	9	10	11	12	PSO1	PSO2
2	CO1		3		3				3			2				
	CO2 CO3		2		2		2									
	CO4		2	1	2								1		2	
	CO5								3							
	CO6		2				1					2				
3	Catego	ry	Humanities &	Social Studies (HS)	Basic Sciences (BS)	Engg Sciences (ES)		Professional Core (PC)	Core Elective (CE)		Non-Major Elective (NE)	Open Elective (OE)	Any other	Project/Term	Paper/ Seminar/ Internship(PR)	
				th					~							
4	Approv	val	4	17 ^m M	eeting o	of Aca	demi	ic Coun	cil, Au	g 2013	8					

UNIT I HEART LUNG MACHINE AND ARTIFICIAL HEART 9

Condition for H/L System, Different types of Oxygenators, Pumps, Pulsatile and Continuous Types, Monitoring Process, Shunting, The Indication for Cardiac Transplant, Driving Mechanism, Blood Handling System, Functioning and different types of Artificial Heart, Mock test setup for assessing its Functions 9

UNIT II **CARDIAC ASSIST DEVICES**

Synchronous Counter pulsation, Assisted through Respiration Right Ventricular Bypass Pump, Left Ventricular Bypass Pump, Open Chest and closed Chest type, Intra Aortic Balloon Pumping Veno Arterial Pumping, Prosthetic Cardio Valves, Principle and problem, Biomaterials for implantable purposes, its characteristics and testing. 9

UNIT III **ARTIFICIAL KIDNEY**

Indication and Principle of Haemodialysis, Membrane, Dialysate, Different types of heamodialysers, Monitoring Systems, Wearable Artificial Kidney, Implanting Type.

PROSTHETIC AND ORTHODIC DEVICES UNIT IV

Hand and Arm Replacement - Different Types of Models Externally Powered Limb Prosthesis Feedback in Orthodic System, Functional Electrical Stimulation, Sensory Assist Devices, Materials for Prosthetic and orthodic devices, Haptic Devices

UNIT V RESPIRATORY AND HEARING AIDS

9

Intermittent positive pressure, Breathing Apparatus Operating Sequence, Electronic IPPB unit with monitoring for all respiratory parameters, Types of Deafness, Hearing Aids, Construction and Functional Characteristics

TOTAL = 45 PERIODS

REFERENCES

- 1. Kolff W.J., Artificial Organs, John Wiley and Sons, New York, 1979.
- 2. Andreas.F.Vonracum, Hand book of bio material evalution, Mc-Millan publishers, 1980.
- 3. Albert M.Cook and Webster J.G., Therapeutic Medical Devices, Prentice Hall Inc., New Jersey, 1982
- 4. Gray E Wnek, Gray L Browlin Encyclopedia of Biomaterials and Biomedical Engineering Marcel Dekker Inc New York 2004.
- 5. John. G. Webster Bioinstrumentation John Wiley & Sons (Asia) Pvt Ltd 2004.

			ŀ	ADVA	ANCES	S IN E	LEC	TRON	NICS A	PPLI	ED	L	Т	P		С	
D 101				,	то но	SPIT	AL]	ENGIN	IEERI	NG							
P181	PEBM05.	3 ₁	ota	l Con	tact Ho	urs – 4	45					3	0	0		3	
			Pı	rerequ	isite co	ourse -	- basi	ic know	vledge s	signal	process	ing (B	.Tech	/B.E)			
			С	ourse	Coordi	nator	Nam	e & De	partme	nt:- M	lr.Mano	j Pras	ath T.	& De	partm	ent. of	
					lical Er	ginee	ring										
C	OURSE																
	 Το ι 	unders	tand	the s	ignifica	ance o	f infe	ections,	biome	dical v	waste ar	nd its p	proper	dispc	sal		
	• To t	teach t	he s	tuden	ts abou	t the c	ontro	ols appl	ied to v	vaste 1	manage	ment.					
	OURSE																
CO1		What c	lini	cal en	gineeri	ng is a	all ab	out and	l about	hospit	tal mana	ageme	nt				
CO2	2	Types	and	impo	rtance	of netv	worki	ing, dif	ferent t	opolog	gies and	l uses					
CO3	3]	Princip	oles	of fib	er optic	comr	nuni	cation i	n hospi	tal en	vironme	ent					
CO4	l]	Princip	oles	of EN	1 I												
CO5	5 1	Use of	virt	ual er	nvironn	nent in	n mec	licine									
CO6	5 1	Unders	stan	ding t	he usag	e of n	etwo	rking i	n medio	cal fiel	ld						
Μ	lapping of	f Cours	se C	Outcor	nes wit	h Prog	gram	outcon	nes (PO	s) (1/2	2/3 indi	cates s	treng	th of			
co	orrelation)) 3-Hig	gh, 2	2-Med	lium, 1-	Low											
1 (COs/Pos		1	2	3	4	5	6	7	8	9	10		11	12	PSO1	PSO2
2 0	CO1		3		3				3			2	2				
	CO2						2										

	CO3	2		2											
	CO4		1									1		2	
	CO5							3							
	CO6	2				1					2				
3	Category	Humanities &	Social Studies (HS)	Basic Sciences (BS)	Engg Sciences (ES)		Professional Core (PC)	Core Elective (CE)	,	Non-Major Elective (NE)	Open Elective (OE)	Any other	Project/Term	raper/ semmar/ Internship(PR)	
4	Approval	4	17 th M	eeting of	of Aca	demi	ic Coun	cil, Au	g 2018	8					

CLINICAL UNIT I ENGINEERING 9

Need for Standardization, Medical standards and recalibration, Hospital design, Hospital safety Regulations, hospital Management and Legal aspects.

UNIT II NETWORKING

Importance of networking, types of networking, LAN features, network topologies, LAN components, network operating system, basic data communication concept, application, LAN and multi-user system, planning and installing LAN in hospital set up.

UNITIII FIBRE OPTIC SENSORS FOR MEASURING PHYSIOLOGICAL PARAMETERS

Different optical sources, optical detectors, principle of fiber optic cables, single mode, multi mode, step index and graded index type, sensors based on polarisation, interferometer principle, magnetic sensors, application of the sensors in measuring pressure, temperature, flow, rotation and chemical activities, principles of smart sensors.

UNIT IV EMI AND EMC APPLIED TO HOSPITAL EQUIPMENTS 9

Principles of EMI, computation Of EMI, measuring techniques to quantify the level of interference, method of suppressing and isolating this unit from interference

UNIT V VIRTUAL REALITY APPLICATION

Basic concepts of Virtual Environment, Human Factors and Human Perception, Computer graphics principles used in VR, Modeling of a Virtual Environment, Existing tools, Avadars, Sensors for Perception, Tracking, Camera, Head mount display used in VR, Applications of Virtual Reality in Medicine

9

9

REFERENCES

- 1. Syed Amin Tabish "Hospital and Health services Administration Principles and Practices Oxford Press New Delhi 2001
- 2. Jacob Kline Handbook of Biomedical Engineering Academe press INC Sandiego 1981.
- 3. Bernhard Keiser, Principles of Electromagnetic Compatibility, Artech House 3rd Edition, 1986.
- 4. Eric Udd, Fibre Optic Sensors and introduction for engineers and scientists, WileyInterscience Publication, New Delhi, 1991.
- 5. SK Basandia, Local Area Network, Golgotia Publishing Pvt. Ltd., New Delhi, 1995

OPEN ELECTIVE

P18OECS001

BUSINESS ANALYTICS

	BUSINESS ANALYTICS	L	Т	Р	С
P18OECS001	Total Contact Hours – 45	3	0	0	3
	Prerequisite – Nil				
	Course Designed by – Department of Electrical &	Elect	ronic	s Eng	ineeri

OBJECTIVES

- 1. Understand the role of business analytics within an organization.
- 2. Analyze data using statistical and data mining techniques and understand relationships between the underlying business processes of an organization.
- 3. To gain an understanding of how managers use business analytics to formulate and solve business problems and to support managerial decision making.
- 4. To become familiar with processes needed to develop, report, and analyze business data.
- 5. Use decision-making tools/Operations research techniques.
- 6. Mange business process using analytical and management tools.
- 7. Analyze and solve problems from different industries such as manufacturing, service, retail, software, banking and finance, sports, pharmaceutical, aerospace etc.

SYLLABUS

Module I Business analytics

Hours

Business analytics: Overview of Business analytics, Scope of Business analytics, Business Analytics Process, Relationship of Business Analytics Process and organization, competitive advantages of Business Analytics. Statistical Tools: Statistical Notation, Descriptive Statistical methods, Review of probability distribution and data modelling, sampling and estimation methods overview.

Module II Trendiness and Regression Analysis

Hours

Trendiness and Regression Analysis: Modelling Relationships and Trends in Data, simple Linear Regression, Important Resources, Business Analytics Personnel, Data and models for Business analytics, problem solving, Visualizing and Exploring Data, Business Analytics Technology.

Module III Organization Structures of Business analytics Hours

Organization Structures of Business analytics, Team management, Management Issues, Designing Information Policy, Outsourcing, Ensuring Data Quality, Measuring contribution of Business analytics, Managing Changes. Descriptive Analytics, predictive analytics, predicative Modelling, Predictive analytics analysis, Data Mining, Data Mining Methodologies, Prescriptive analytics and its step in the business analytics Process, Prescriptive Modelling, nonlinear Optimization.

Module IV Forecasting Techniques Hours

Forecasting Techniques: Qualitative and Judgmental Forecasting, Statistical Forecasting Models, Forecasting Models for Stationary Time Series, Forecasting Models for Time Series with a Linear Trend, Forecasting Time Series with Seasonality, Regression Forecasting with Casual Variables, Selecting Appropriate Forecasting Models. Monte Carlo Simulation and Risk Analysis: Monte Carle Simulation Using Analytic Solver Platform, New-Product Development Model, Newsvendor, Model, Overbooking Model, Cash Budget Model.

Module V Decision Analysis Hours

Decision Analysis: Formulating Decision Problems, Decision Strategies with the without Outcome Probabilities, Decision Trees, The values of Information, Utility and Decision Making.

Module VI Recent Trends in

Hours

Recent Trends in: Embedded and collaborative business intelligence, Visual 4 data recovery, Data Storytelling and Data journalism.

References Books:

- 1. Business analytics Principles, Concepts, and Applications by Marc J. Schniederjans, Dara G. Schniederjans, Christopher M. Starkey, Pearson FT Press.
- 2. Business Analytics by James Evans, persons Education.

P180EMA002

OPERATIONS RESEARCH

	OPERATIONS RESEARCH	L	Т	Р	С
P180EMA002	Total Contact Hours – 45	3	0	0	3

9

9

5

4

Total No. of Periods: 45

Prerequisite – Nil
Course Designed by - Department of Electrical & Electronics Engineering

OBJECTIVES

- To apply the dynamic programming to solve problems of discreet and continuous variables.
- To apply the concept of non-linear programming.
- An ability to carry out the sensitivity analysis.
- An ability to model the real world problem and simulate it.

SYLLABUS

Module I Optimization Techniques

Hours

Optimization Techniques, Model Formulation, models, General L.R Formulation, Simplex Techniques, Sensitivity Analysis, Inventory Control Models.

Module II Simplex Method

Hours

Formulation of a LPP - Graphical solution revised simplex method - duality theory - dual simplex method - sensitivity analysis - parametric programming

Module III Nonlinear programming and PERT-CPM

Hours

Nonlinear programming problem - Kuhn-Tucker conditions min cost flow problem - max flow problem - CPM/PERT

Module IV Server Models and Geometric Programming

Hours

Scheduling and sequencing - single server and multiple server models - deterministic inventory models - Probabilistic inventory control models - Geometric Programming.

Module V Graphical AnalysisandSimulation of Game Theory Hours

Competitive Models, Single and Multi-channel Problems, Sequencing Models, Dynamic Programming, Flow in Networks, Elementary Graph Theory, Game Theory Simulation

Total No. of Periods: 45

References Books:

- 1. H.A. Taha, Operations Research, An Introduction, PHI, 2008
- 2. H.M. Wagner, Principles of Operations Research, PHI, Delhi, 1982.
- 3. J.C. Pant, Introduction to Optimisation: Operations Research, Jain Brothers, Delhi, 2008

9

9

9

9

- 4. Hitler Libermann Operations Research: McGraw Hill Pub. 2009
- 5. Pannerselvam, Operations Research: Prentice Hall of India 2010

P180EME003

INDUSTRIAL SAFETY

	INDUSTRIAL SAFETY	L	Т	Р	C
P180EME003	Total Contact Hours – 45	0	0	0	0
	Prerequisite – Nil				
	Course Designed by – Department of Electrical & Electron	nics E	Ingine	ering	

OBJECTIVES

- 1. To study about the industrial safety and types.
- 2. To know about the tools and fundamentals of maintenance.
- 3. To study about the methods of wear and corrosion and their prevention
- 4. To know about the importance of fault tracing and its concepts.
- 5. To learn about the periodic and preventive maintenance of safety.

SYLLABUS

Module I **Industrial safety**

Hours

Accident, causes, types, results and control, mechanical and electrical hazards, types, causes and preventive steps/procedure, describe salient points of factories act 1948 for health and safety, wash rooms, drinking water layouts, light, cleanliness, fire, guarding, pressure vessels, etc., Safety color codes. Fire prevention and firefighting, equipment and methods.

Module II **Fundamentals of maintenance engineering** Hours

Definition and aim of maintenance engineering, Primary and secondary functions and responsibility of maintenance department, Types of maintenance, Types and applications of tools used for maintenance, Maintenance cost & its relation with replacement economy, Service life of equipment.

Module III Wear and Corrosion and their prevention Hours

Wear- types, causes, effects, wear reduction methods, lubricants-types and applications, Lubrication methods, general sketch, working and applications, i. Screw down grease cup, ii. Pressure grease gun, iii. Splash lubrication, iv. Gravity lubrication, v. Wick feed lubrication vi. Side feed lubrication, vii. Ring lubrication, Definition, principle and factors affecting the corrosion. Types of corrosion, corrosion prevention methods

Module IV **Fault tracing** Hours

9

9

Fault tracing-concept and importance, decision tree concept, need and applications, sequence of fault finding activities, show as decision tree, draw decision tree for problems in machine tools, hydraulic, pneumatic, automotive, thermal and electrical equipment's like, I. Any one machine tool, ii. Pump iii. Air compressor, iv. Internal combustion engine, v. Boiler, vi. Electrical motors, Types of faults in machine tools and their general causes.

Module V Periodic and preventive maintenance

9

10

Hours

Periodic inspection-concept and need, degreasing, cleaning and repairing schemes, overhauling of mechanical components, overhauling of electrical motor, common troubles and remedies of electric motor, repair complexities and its use, definition, need, steps and advantages of preventive maintenance. Steps/procedure for periodic and preventive maintenance of: I. Machine tools, ii. Pumps, iii. Air compressors, iv. Diesel generating (DG) sets, Program and schedule of preventive maintenance of mechanical and electrical equipment, advantages of preventive maintenance. Repair cycle concept and importance

Total No. of Periods: 45

References Books:

- 1. Maintenance Engineering Handbook, Higgins & Morrow, Da Information Services.
- 2. Maintenance Engineering, H. P. Garg, S. Chand and Company.
- 3. Pump-hydraulic Compressors, Audels, Mcgrew Hill Publication.
- 4. Foundation Engineering Handbook, Winterkorn, Hans, Chapman & Hall London.

P180EBA004COST MANAGEMENT OF ENGINEERING PROJECTS

P180EBA004	COST MANAGEMENT OF ENGINEERING PROJECTS	L	Τ	Р	С
	Total Contact Hours – 35	3	0	0	3
	Prerequisite – Nil				
	Course Designed by – Department of Electrical & Electronics	s Eng	ginee	ring	

Module I Introduction and Overview of Cost Management of Engineering 9 Hours

Introduction and Overview of the Strategic Cost Management Process Cost concepts in decisionmaking; relevant cost, Differential cost, Incremental cost and Opportunity cost. Objectives of a Costing System; Inventory valuation; Creation of a Database for operational control; Provision of data for Decision-Making.

Module II ProjectCost Management Hours

Project: meaning, Different types, why to manage, cost overruns centers, various stages of project execution: conception to commissioning. Project execution as conglomeration of technical and non-technical activities. Detailed Engineering activities. Pre project execution main

clearances and documents Project team: Role of each member. Importance Project site: Data required with significance. Project contracts. Types and contents. Project execution Project cost control. Bar charts and Network diagram. Project commissioning: mechanical and process

Module III Cost Behavior and Profit Planning Marginal Costing Hours

Cost Behavior and Profit Planning Marginal Costing; Distinction between Marginal Costing and Absorption Costing; Break-even Analysis, Cost-Volume-Profit Analysis. Various decisionmaking problems. Standard Costing and Variance Analysis. Pricing strategies: Pareto Analysis. Target costing, Life Cycle Costing. Costing of service sector. Just-in-time approach, Material Requirement Planning, Enterprise Resource Planning, Total Quality Management and Theory of constraints. Activity-Based Cost Management, Bench Marking; Balanced Score Card and Value-Chain Analysis. Budgetary Control; Flexible Budgets; Performance budgets; Zero-based budgets. Measurement of Divisional profitability pricing decisions including transfer pricing.

Module IV Quantitative techniques for cost management Hours

Quantitative techniques for cost management, Linear Programming, PERT/CPM, Transportation problems, Assignment problems, Simulation, Learning Curve Theory.

Total No. of Periods: 35 Hours

10

6

9

References Books:

- 1. Cost Accounting A Managerial Emphasis, Prentice Hall of India, New Delhi
- 2. Charles T. Horngren and George Foster, Advanced Management Accounting
- 3. Robert S Kaplan Anthony A. Alkinson, Management & Cost Accounting
- 4. Ashish K. Bhattacharya, Principles & Practices of Cost Accounting A. H. Wheeler publisher
- 5. N.D. Vohra, Quantitative Techniques in Management, Tata McGraw Hill Book Co. Ltd.

P180EME005

COMPOSITE MATERIALS

	COMPOSITE MATERIALS	L	Т	Р	С
P180EME005	Total Contact Hours – 45	3	0	0	3
	Prerequisite – Nil				
	Course Designed by – Department of Electrical & E	lectro	onics	Engir	ieerin

Module I Introduction

Hours

Definition – Classification and characteristics of Composite materials. Advantages and application of composites. Functional requirements of reinforcement and matrix. Effect of reinforcement (size, shape, distribution, volume fraction) on overall composite performance.

Module II Reinforcements Hours

Preparation-layup, curing, properties and applications of glass fibers, carbon fibers, Kevlar fibers and Boron fibers. Properties and applications of whiskers, particle reinforcements. Mechanical Behavior of composites: Rule of mixtures, Inverse rule of mixtures. Isostrain and Isostress conditions.

Module III Manufacturing of Metal Matrix Composites Hours

Casting – Solid State diffusion technique, Cladding – Hot isostatic pressing. Properties and applications. Manufacturing of Ceramic Matrix Composites: Liquid Metal Infiltration – Liquid phase sintering. Manufacturing of Carbon – Carbon composites: Knitting, Braiding, Weaving. Properties and applications.

Module IV Manufacturing of Polymer Matrix Composites Hours

Preparation of Moulding compounds and prepregs – hand layup method – Autoclave method – Filament winding method – Compression moulding – Reaction injection moulding. Properties and applications.

Module V Strength

Hours

Laminar Failure Criteria-strength ratio, maximum stress criteria, maximumstrain criteria, interacting failure criteria, hydro thermal failure. Laminate first play failure-insight strength; Laminate strength-ply discount truncated maximum strain criterion; strength design using caplet plots; stress concentrations.

Total No. of Periods: 45 Hours

Material Science and Technology – Vol 13 – Composites by R.W.Cahn – VCH, West Germany.

Materials Science and Engineering, An introduction. WD Callister, Jr., Adapted by R. Balasubramaniam, John Wiley & Sons, NY, Indian edition, 2007.

References:

Text Books:

- 1. Hand Book of Composite Materials-ed-Lubin.
- 2. Composite Materials K.K.Chawla.
- 3. Composite Materials Science and Applications Deborah D.L. Chung.
- 4. Composite Materials Design and Applications Danial Gay, Suong V. Hoa, and Stephen W.Tasi.

P180EEE006 WASTE TO ENERGY

WASTE TO ENERGY	L	Т	Р	С

9

9

	Total Contact Hours – 45	3	0	0	3
P180EEE006	Prerequisite – Nil				
	Course Designed by – Department of Electrical & Electron	nics E	nginee	ering	

Module I **Introduction to Energy from Waste**

Introduction to Energy from Waste: Classification of waste as fuel - Agro based, Forestresidue, Industrial waste - MSW – Conversion devices – Incinerators, gasifiers, digestors

Module II **Biomass Pyrolysis**

Biomass Pyrolysis: Pyrolysis - Types, slow fast - Manufacture of charcoal - Methods - Yields and application – Manufacture of pyrolytic oils and gases, yields and applications.

Module III **Biomass Gasification**

Biomass Gasification: Gasifiers - Fixed bed system - Downdraft and updraft gasifiers -Fluidized bed gasifiers – Design, construction and operation – Gasifier burner arrangement for thermal heating - Gasifier engine arrangement and electrical power - Equilibrium and kinetic consideration in gasifier operation.

Module IV **Biomass Combustion**

Biomass Combustion: Biomass stoves - Improved chullahs, types, some exotic designs, Fixed bed combustors, Types, inclined grate combustors, Fluidized bed combustors, Design, construction and operation - Operation of all the above biomass combustors.

Module V **Biogas**

Biogas: Properties of biogas (Calorific value and composition) - Biogas plant technologyand status - Bio energy system - Design and constructional features - Biomass resources and their classification - Biomass conversion processes - Thermo chemical conversion - Direct combustion - biomass gasification - pyrolysis and liquefaction - biochemical conversion anaerobic digestion - Types of biogas Plants - Applications - Alcohol production from biomass -Bio diesel production - Urban waste to energy conversion - Biomass energy programme in India.

Total No. of Periods: 45

References Books:

- 1. Non-Conventional Energy, Desai, Ashok V., Wiley Eastern Ltd., 1990.
- 2. Biogas Technology A Practical Hand Book Khandelwal, K. C. and Mahdi, S. S., Vol. I & II, Tata McGraw Hill Publishing Co. Ltd., 1983.
- 3. Food, Feed and Fuel from Biomass, Challal, D. S., IBH Publishing Co. Pvt. Ltd., 1991.
- 4. Biomass Conversion and Technology, C. Y. WereKo-Brobby and E. B. Hagan, John Wiley & Sons, 1996.

P180ECE007 ENVIRONMENTAL HEALTH ENGINEERING

9 Hours

9 Hours

9 Hours

9 Hours

9 Hours

	ENVIRONMENTAL HEALTH ENGINEERING	L	Т	Р	С					
	Total Contact Hours - 45	3	0	0	3					
P180ECE007	Prerequisite – Waste Management									
	Course Designed by – Dept of Civil Engineering									

Module I INTRODUCTION

Impact of Development and Water Pollution – Ecology and ecosystems Impact of development, land use and natural resource management, Cause and effects of environmental pollution

Module II SOURCES OF POLLTION

Natural Processes: Pollution due to industrial, agriculture and municipal wastes – Limitation of disposal of dilution. BOD considerations in streams- Water Pollution control legislation.

Module III AIR POLLUTION

Air and Noise Pollution and Control- Pollutants and their sources- Effect of pollution of human wealth, vegetation- Air pollution control legislation -noise pollution- sources and effects – Control measures.

Module IV SOLID WASTE MANAGEMENT

Solid Wastes Management and Water Control Sources - Characteristics Quantities – Collection methods and disposal techniques - Sanitary -landfill -Incineration and pyrolysis – composting - water borne diseases – of mosquitoes, flies, rodents.Rational control and naturalistic methods of control, uses and limitations of pesticides, engineering measures of water control.

Module V FOOD SANITATION

Food & Milk Sanitation : Relation of food to disease – principles of food sanitation – Sanitation of Kitchen in restaurants and other catering establishments – Quality changes in milk – Milk as carrier of infection – Pasteurization of milk – HTST and LTLT processes. Cattle shed sanitation.

TEXT BOOKS

1. Ehlws V.M. and E.W. Steel. Municipal and Rural Sanitation – McGraw Hill Co. Inc, New York, 1954

REFERENCES

- 1. Park J.E. and Park K.,"Text Book of Preventing and Social Medicine", M/s. Banarsidos, Bhanot, Jabalpur, 1980.
- 2. Stern A.C. ed, "Air Pollution Vol. I, II & III", Academic Press, New York, 1968
- 3. Cuniff P.E, "Environmental Noise Pollution", John Wiley & Sons, New York. 1977.

P180EBT008 BIO ENTREPRENEURSHIP DEVELOPMENT

9 Hours

9 Hours

9 Hours

9Hours

9 Hours

	BIO ENTREPRENEURSHIP DEVELOPMENT	L	Т	P	С
DICORDITION	Total Contact Hours - 45	3	0	0	3
P180EBT008	Prerequisite –Bioprocess, genetic engineering, TQM				
	Course Designed by – Dept of Industrial Biotechnology				

Module I ENTREPRENEURSHIP FUNDAMENALS

Entrepreneur - Entrepreneurship - Enterprise - Writing good business plan - operations and management.

DECISION MAKING AND TIME MANAGEMENT 9 Hours Module II

Entrepreneur psychology – personal decision making style – Decision making process – setting personal and Business goals – Setting time priorities – Business person working at home.

Module III ENTREPRENEURSHIP – FINANCE AND ECONOMIC FEASIBILITY 9 Hours

Financing the business- Raising venture capital - Financing sources - Pricing the product (or) Service - operating expenses Economic Analysis - Basic financial Analysis worksheets

Module IV COMPANY LAWS AND REGULATIONS

Forming companies- Types of companies - Types of market - Proprietary information: Intellectual property, copy right, ownerships, Trademark, Patent – International Trade

Module V ENTREPRENEURSHIP IN BIOTECHNOLOGY

Various business opportunities in Biotechnology - Development of Biotech companies in India -Case studies on Biotech companies and its growth

TEXT BOOK

1. Exploring Entrepreneurship: D. Allan Barefield and George F. Smith, Ettmae Westbrook, Tennesse State University, 2006

REFERENCES

1. Entrepreneurship fundamentals by Zobias Kollmann International journal of Zechnology management,2007

	REHABILITATION ENGINEERING	L	Τ	P	С					
P18OEBM009	Total Contact Hours – 45	3	0	0	3					
	Prerequisite course – Knowledge in artificial organs (B.Tech/B.E)									
	Course Coordinator Name & Department:- Ms.Geeth	rtmen	nt. of Biomedical							
	Engineering									
COURSE OBJECTIVES:-										
To devel	• To develop an understanding of the various rehabilitation aid principle and its working.									
• To give	various information about rehabilitation medicine and A	dvoca	cy.							

COURSE OUTCOMES (COs)

9 Hours

9 Hours

9 Hours

CO	1	Desi	gn rel	habilit	ation ai	d and	appl	y them	with co	onfide	nce, to l	nelp the ch	allenge	d peo	ple.		
CO	2				-		-	-				entails the	0				
				-	aids in ecreation		d to	promot	e inclu	sion o	of their	users into	the ma	ainstro	eam of	society,	
CO	3						Serv	vice of	the U	nited	Kingdo	m Rehabil	itation	Engi	neers(F	REs) are	
				invol							U			U	[×]	,	
CO	4	This includes electrically powered wheelchairs, active user (lightweight) manual wheelchair															
		in more advanced clinics this may include assessments for specialist wheelchair control system														systems	
00	~		and/or bespoke seating solutions.														
CO.	5	Learn about the technologies relating Rehabilitation Engineering															
CO	6	To Understand the concepts of Rehabilitation in medicine															
с	orrelati	on) 3-H					gram	outcom	es (PO	s) (1/2	2/3 indi	cates streng	gth of	-			
1	COs/Pe	os	1	2	3	4	5	6	7	8	9	10	11	12	PSO1	PSO2	
2	CO1		3	3	2			3			2						
	CO2					3			3			2	3		_		
	CO3			2			2	3			2						
	CO4				2	2			3	2					3		
	CO5 CO6		3			32			3	3							
3	Coo	1737	3						3								
5	Calego	n y	Humanities &	Social Studies (HS)	Basic Sciences (BS)	Engg Sciences (ES)		Professional Core (PC)	Core Elective (CE)		Non-Major Elective (NE)	Open Elective (OE)	Any other	Project/Term Paper/ Seminar/ Internship(PR)			
4	Approv	val	4	47 th M	eeting of	of Aca	dem	ic Coun	cil, Au	g 201	8	1					

UNIT I REHABILITATION TECHNOLOGY

Selection, design or manufacturing of augmentive or assistive devices appropriate for individual with disability

UNIT II REHABILITATION SCIENCE

Knowledge about the basic and clinical research about the variation in the physiological functioning and anatomical structure

UNIT III REHABILITATION ADVOCACY

9

9

Legal aspect helps the handicapped people in choosing the device, the provisions available to them in this regard.

UNIT IV REHABILITATION MEDICINE

9

Physiological aspects of functional recovery, neurological and psychological aspects, rehabilitation therapies, training to restore vision auditory and speech

UNIT V RÉHABILITATION ENGINEERING TECHNOLOGIES: PRINCIPLESOF APPLICATION 9

Conceptual frameworks, Education and Quality Assurance, Specific Impairments and Related technologies, Future Developments – Rehabilitation Robotics, and Brain computer interface systems.

REFERENCES

- 1. Reswick.J. What is Rehabilitation Engineering? ,Annual Review of rehabilitation Volume 2 Springer Vorlage, New York, 1982.
- 2. Robinson.C.J, Rehabilitation Engineering, Handbook of electrical engineering, CRC Press, Bocaraton, 1993

	BIO MECHANICS	L	Т	Р	C							
P180EBM01	Total Contact Hours – 45	0	0	3								
		Prerequisite course – Knowledge in tissue engineering (B.Tech/B.E)										
	Course Coordinator Name & Department:- Ms.Vinod Engineering	Course Coordinator Name & Department:- Ms.Vinodhini R & Department. of Biomedical Engineering										
COURSE	OBJECTIVES:-											
• Intr	oduction to bio-mechanics.											
• To	know mechanical properties of soft biological tissues.											
COURSE	OUTCOMES (COs)											
	To learn Newton's laws, biofluid mechanics, soft tissue	mech	anics,	stres	ss, strain, she	arrate,						
N	viscosity, visco elasticity and non Newtonian viscosity.											
CO2	Learn the Flow properties of blood, effect of shear rate.											
CO3	To learn Orthopedic biomechanics.											
CO4	To learn Skeletal muscles servo mechanism.											
CO5	Study the Experimental and Analytical method of analys	is, C	linical	eval	uation, Head	Injury						
t	olerance, rotational injury, spine injury.											
CO6	To understand the mechanical activity of biological systems											
	f Course Outcomes with Program outcomes (POs) (1/2/3 indic) 3-High, 2-Medium, 1-Low	ates s	trengt	h of								

1	COs/Pos	1	2	3	4	5	6	7	8	9	10	11	12	PSO1	PSO2
2	CO1	2	1	3	1	2	2	2	2						
	CO2	2	1	3	1	2	2	2	2						
	CO3	2	1	3	1	2	2	2	2						
	CO4	2	1	3	1	2	2	2	2						3
	CO5	2	1	3	1	2	2	2	2						
	CO6	2	1	3	1	2	2	2	2						
3	Category	Humanities &	Social Studies (HS)	Basic Sciences (BS)	Engg Sciences (ES)		Professional Core (PC)	Core Elective (CE)		Non-Major Elective (NE)	Open Elective	Any other	Project/Term	Paper/ Seminar/ Internship(PR)	
4	Approval		47 th M	leeting	of Aca	adem	ic Cou	ncil, Au	g 201	8					

UNIT I INTRODUCTION

Introduction to bio-mechanics, relation between mechanics and Medicine, Newton's laws, biofluid mechanics, soft tissue mechanics, stress, strain, shear rate, viscosity, visco elasticity, non Newtonian viscosity, mechanical properties of soft biological tissues.

UNIT II MECHANICS OF CIRCULATION

Flow properties of blood, effect of shear rate, hematocrit, temperature and protein Content of blood, rheology of blood and micro vessels, dynamics of circulatory system, turbulence flow around prosthetic heart valves.

UNIT III MECHANICS APPLIED TO ORTHOPAEDICS

Orthopedic biomechanics, mechanical properties of bones, stress induced bone growth, kinematics and kinetics of joints, lubrication of joints, analysis of force in orthopedic implants.

UNIT IV MECHANISM OF BIOLOGICAL SYSTEMS

Skeletal muscles servo mechanism, Cardio vascular control mechanism, respiratory control mechanism

9

9

9

UNIT V BIO MECHANICAL ASPECT OF ACCIDENT INVESTIGATION

Experimental and Analytical method of analysis, Clinical evaluation, Head Injury tolerance, rotational injury, spine injury – Accident reconstruction, Analysis of impact, skid analysis – Damage analysis.

REFERENCES

- 1. Y.C.Fung, Biomechanics : Mechanical properties in living tissues, Springer Verlag, Newyork1981.
- 2. D.Dawson and Right, Introduction to Bio-mechanics of joints and joint replacement, Mechanical Engineering publications Ltd. 1989.
- 3. Jacob clime, Head book of Bio Medical Engineering, Academic Press in, Sandiego, 1988. Susan J.Hall , Basics Bio Mechanics 4th Edition, McGrawHill Publishing Co,2002.