Academic Course Description

BHARATH UNIVERSITY Faculty of Engineering and Technology Department of Civil Engineering

BCE064 ADVANCED CONCRETE DESIGN Seventh Semester, 2015-16 (Odd Semester)

Course (catalog) description

To apprise the students about the basics of design of flat slabs, folded plates and cylindrical shells.

Compulsory/Elective course	: Elective course for civil students
Credit hours	: 3 credits
Course Coordinator	: Dr.D.S.Vijayan, Associate Professor
Instructors	:

Name of the	Class	Office	Office	Email (domain:@	Consultation
instructor	handling	location	phone	bharathuniv.ac.in	
Dr.D.S.Vijayan	Second year Civil	Civil Block	044- 22290742		9.00 - 9.50 AM

Relationship to other courses:

Pre –requisites	:	BCE507 Construction Technology
Assumed knowledge	:	Basic knowledge in Design in floor, Beam,plates,etc
Following courses	:	BCE 5L1 Construction Engineering Lab

Syllabus Contents

UNIT I	9
Limit Analysis of beams in Flexure: Behaviour of reinforced concrete m	embers in bending and shear. Plastic
hinge Rotation capacity. Factors affecting rotation capacity of a section. Plastic	moment. Moment curvature
relationship. Redistribution of moments – Analysis and limit state design of cor	ntinuous beams.
UNIT II	9
Limit Analysis & Design: Limit analysis and design of Portal frames.	
UNIT III	9
Design of Flat Slabs Using BIS 456: Analysis and design of orthogrid floo	ors/roofs.
UNIT IV	9
Analysis and design of prismatic folded plates and circular cylindrical sl	hells using beam approximation.
UNIT V	9
Design of bunkers and silos.	
Total No. of Periods:	45

Text Books:

1. Krishna Raju N," Advanced Concrete Design", CBS Publishers and Distribution, Delhi, 1988.

References:

- 1. Jain OP and Jaikrishna,"Plain and reinforced Concrete Vol.2", Nemchand and bros, Roorkee, 1958
- 2. Dunham C W,"Advanced Concrete Design", Mc Graw Hills Company, 1992

3. Malick and Rangasamy, "Reinforced Concrete Design", Khanna Publishers, Delhi, 1976

Computer usage: Design in Stadd pro v8 and Tekla structures

Professional component

General	-	0%
Basic Sciences	-	0%
Engineering sciences & Technical arts	-	0%
Professional subject	-	100%

Broad area: Beam | Silo | Bunkers | Design | Slab | Floors

Test Schedule

S. No.	Test	Tentative Date	Portions	Duration
1	Cycle Test-1	August 1 st week	Session 1 to 14	2 Periods
2	Cycle Test-2	September 2 nd week	Session 15 to 28	2 Periods
3	Model Test	October 2 nd week	Session 1 to 45	3 Hrs
4	University	ТВА	All sessions / Units	3 Hrs.
-	Examination			

Mapping of Instructional Objectives with Program Outcome

This Co	urse is to introduce the principles of various surveying methods and applications to Civil	Correlat	es to	program
Enginee	ering projects.	outcome	9	
		н	М	L
1.	Behaviour of reinforced concrete members in bending and shear. Plastic hinge Rotation capacity. Factors affecting rotation capacity of a section. Plastic moment. Moment curvature relationship. Redistribution of moments – Analysis and limit state design of continuous beams.	a,e,	b,d	
2.	Limit Analysis & Design: Limit analysis and design of Portal frames.	b	е	
3.	Design of Flat Slabs Using BIS 456: Analysis and design of orthogrid floors/roofs.	a,e		
4.	Analysis and design of prismatic folded plates and circular cylindrical shells using beam approximation.	а	d	
5.	Design of bunkers and silos.		е	

H: high correlation, M: medium correlation, L: low correlation

Draft Lecture Schedule

Session	Topics	Problem solving (Yes/No)	Text / Chapter
UNIT I			
1.	Introduction	No	
2.	Effective span	No	[T1& R2]
3.	Span / Depth ratio	No	
4.	Load distribution method	No	-
5.	Bending moment and shear forces	No	-
6.	Continues beam with simple supports	Yes	-
7.	Behaviors of reinforced concrete members in bending and shear	Yes	-
8.	Continues beam of two spans supported	Yes	-
9.	Redistribution of moments – Analysis and limit state design of continuous beams.	Yes	
UNIT II 10.	Introduction Limit Analysis & Design	No	
11.	Limit Analysis & Design step by procedure	Yes	-
12.	Limit Analysis & Design problems	Yes	-
13.	Introduction of portal frames	No	[T1, R1]
14.	Analysis and design of portal frames	Yes	[]
15.	Design a portal frame hinged at base	Yes	-
16.	Example Design problems	Yes	
17.	Design a supported on a portal frame spaced	Yes	
18.	Example Design problems	Yes	
UNIT III			
19.	Introduction of flat slabs and flat plates	No	
20.	Checking for one way shear	No	-
21.	Two way shear	Yes	-
22.	Permissible punching shear	Yes	[T1& R1]
23.	Shear due to unbalanced moment	Yes	
24.	Strength of column area for moment transfer by torsion	Yes	
25.	Shear reinforcement design	Yes	1
26.	Effect of opening in flat slab	Yes]
27.	Shear in two way slab with beams	Yes]

TIV			
28.	General feature of folded plates	No	
29.	Analysis of folded plates	No	
30.	Structural behavior of folded plates	Yes	
31.	Whituey's method	Yes	[T1]
32.	Simpson's method	Yes	
33.	Ineration method and beam method	Yes	
34.	Winter and pei's method	Yes	
35.	Equation of three shears	Yes	
36.	Stress condition in hipped plates	Yes	
ΙΤ ν		·	
37.		No	
	Introduction of bunkers		
38.	Introduction of silo	No	
39.	Design of square bunkers	Yes	
40.	Design of rectangular bunkers	Yes	[T1]
41.	Design of circular bunkers	Yes	
42.	Design problems	Yes	
43.	Design of battery of bunkers	Yes	
44.	Design of silos	Yes	
45.	- silos for storage of cement	Yes	

Teaching Strategies

The teaching in this course aims at establishing a good fundamental understanding of the areas covered using:

- Formal face-to-face lectures
- Tutorials, which allow for exercises in problem solving and allow time for students to resolve problems in understanding of lecture material.
- Laboratory sessions, which support the formal lecture material and also provide the student with practical construction, measurement and debugging skills.
- Small periodic quizzes, to enable you to assess your understanding of the concepts.

Evaluation Strategies

Cycle Test – I	-	5%
Cycle Test – II	-	5%
Model Test	-	5%
Assignment	-	5%
Attendance	-	5%
Final exam	-	70%

Prepared by: Dr D S Vijayan , Department of Civil

Dated :

Addendum

ABET Outcomes expected of graduates of B.Tech / Civil / program by the time that they graduate:

- a. An ability to apply knowledge of mathematics, science, and engineering
- b. An ability to design and conduct experiments, as well as to analyze and interpret data
- c. An ability to design a hardware and software system, component, or process to meet desired needs within realistic constraints such as economic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability
- d. An ability to function on multidisciplinary teams
- e. An ability to identify, formulate, and solve engineering problems
- f. An understanding of professional and ethical responsibility
- g. An ability to communicate effectively
- h. The broad education necessary to understand the impact of engineering solutions in a global, economic, environmental, and societal context
- i. A recognition of the need for, and an ability to engage in life-long learning
- j. A knowledge of contemporary issues
- k. An ability to use the techniques, skills, and modern engineering tools necessary for engineering practice.

Program Educational Objectives

PEO1: PREPARATION

Civil Engineering graduates will have knowledge to apply the fundamental principles for a successful

profession and/or for higher education in Civil Engineering based on mathematical, scientific and engineering

principles, to solve realistic and field problems that arise in engineering and non engineering sectors

PEO2: CORE COMPETENCE

Civil Engineering graduates will adapt to the modern engineering tools and construction methods for planning, design, execution and maintenance of works with sustainable development in their profession.

PEO3: PROFESSIONALISM

Civil Engineering Graduates will exhibit professionalism, ethical attitude, communication and managerial skills, successful team work in various private and government organizations both at the national and international level in their profession and adapt to current trends with lifelong learning.

PEO4: SKILL

Civil Engineering graduates will be trained for developing soft skills such as proficiency in many languages, technical communication, verbal, logical, analytical, comprehension, team building, inter personal relationship, group discussion and leadership skill to become a better professional.

PEO5: ETHICS

Civil Engineering graduates will be installed with ethical feeling, encouraged to make decisions that are safe and environmentally-responsible and also innovative for societal improvement.

Course Teacher	Signature
Dr D S Vijayan	

Course Coordinator

HOD/CIVIL