Academic Course Description

BHARATH UNIVERSITY Faculty of Engineering and Technology Department of Civil Engineering BCE079 - QUALITY CONTROL AND ASSURANCE IN CONSTRUCTION Eighth Semester, 2016-17 (Even Semester)

Course (catalog) description

To understand the dynamics of earth and to estimate dynamic properties of soils to develop the site specific design spectrum for design of sub structure and evaluation of liquefaction potential.

Compulsory/Elective course	: Elective course for Civil students
Credit / contact hours	: 3 credits / 45 hours
Course Coordinator	: Mr.S.Vinothkumar
Instructors	:

Name of the instructor	Class handling	Office location	Office phone	Email (domain:@ bharathuniv.ac.in	Consultation
Mr.S.Vinothkumar	Fourth year Civil	Civil Block		vinothsenna@gmail.com	9.00 - 9.50 AM

Relationship to other courses:

Pre –requisites	:	Building Construction Technology		
Assumed knowledge	:	Dynamics of earth and to estimate dynamic properties of soils		
Following courses	:	NIL		
Syllabus Contents UNIT I GEOTECHNICAL P Occurrence and distribut		9 sture equilibrium - Soil, structure, environmental interaction-distress symptoms - case histories.		
UNIT II EXPANSIVE SOIL Clay mineralogy - swell p		ries 9 field exploration - laboratory tests for identification.		
UNIT III SOIL HEAVING Heave Prediction - Meth observations, shrinkage.		9 diction of heave- Empirical methods - double of dometer tests – soil moisture suction - field		
UNIT IV DESIGN OF FOO Foundation Design – Des provisions.		9 deration – individual and continuous footings- stiffened mats underreamed piles- coda		
UNIT V STABILIZATION Stabilization methods		9		

REFERENCES:

- 1. James, J.O' Brian, Construction Inspection Handbook Quality Assurance and Quality Control, Van Nostrand, New York, 1989.
- 2. Kwaku, A., Tena, Jose, M. Guevara, Fundamentals of Construction Management and Organisation, Reston Publishing Co., Inc., Virginia, 1985.
- 3. Juran Frank, J.M. and Gryna, F.M. Quality Planning and Analysis, Tata McGraw Hill, 1993
- 4. Hutchins.G, ISO 9000, Viva Books, New Delhi, 2000
- 5. Clarkson H. Oglesby, Productivity Improvement in Construction, McGraw-Hill, 1989.
- 6. John L. Ashford, the Management of Quality in Construction, E & F.N.Spon, New York, 1989.
- 7. Steven McCabe, Quality Improvement Techniques in Construction, Addison Wesley Longman Ltd, England. 1998.

Computer usage: Nil

Professional component

General	-	0%
Basic Sciences	-	0%
Engineering sciences & Technical arts	-	0%
Professional subject	-	100%

Broad area: Dynamics of earth and to estimate dynamic properties of soils

Test Schedule

S. No.	Test	Tentative Date	Portions	Duration
1	Cycle Test-1	February 1 st week	Session 1 to 14	2 Periods
2	Cycle Test-2	March 2 nd week	Session 15 to 28	2 Periods
3	Model Test	April 2 nd week	Session 1 to 45	3 Hrs
4	University Examination	ТВА	All sessions / Units	3 Hrs.

Mapping of Instructional Objectives with Program Outcome

H: high correlation, M: medium correlation, L: low correlation

To understand the dynamics of earth and to estimate dynamic properties of soils To	Correlates to pro	ogram o	utcome
develop the site specific design spectrum for design of sub structure and • evaluation of	Н	М	L
liquefaction potential			
1. To improve the engineering properties and make it suitable for construction	a,e,	b,d	
2. To understand the dynamics of earth and to estimate dynamic properties of soils	b	e	
The engineering properties, problems and solution need to be considered when constructing a foundation on expansive soils.	a,e		
4. To develop the site specific design spectrum for design of sub structure and evaluation of liquefaction potential	а	d	
5. To study the behaviour of the stabilized soil subjected to cyclic loading		е	

Session	Topics	Problem solving (Yes/No)	Text / Chapter	
JNIT I	GEOTECHNICAL PROBLEM			
1.	Occurrence and distribution	No		
2.	Occurrence and distribution	No		
3.	Moisture equilibrium	No		
4.	Moisture equilibrium	No		
5.	Soil, structure, environmental interaction	No		
6.	Soil, structure, environmental interaction	No	[R2]	
7.	Distress symptoms	No		
8.	Distress symptoms	No		
9.	Case histories	No		
10	EXPANSIVE SOIL PROPERTIES	NI-		
10.	Clay mineralogy	No		
11.	Clay mineralogy	No		
12.	Swell potential	No		
13.	Swell potential	No		
14.	Field exploration	No		
15.	Field exploration	No	[R3]	
16.	Laboratory tests for identification	No		
17.	Laboratory tests for identification	No		
18.	Laboratory tests for identification	No		
NIT III	SOIL HEAVING	i		
19.	Heave Prediction	No		
20.	Heave Prediction	No		
21.	Method of prediction of heave	No		
22.	Method of prediction of heave	No		
23.	Empirical methods	No	[R4]	
24.	Double of dometer tests	No		
25.	Soil moisture suction	No	1	
26.	Field observations, shrinkage.	No	1	
27.	Field observations, shrinkage.	No]	
NIT IV	DESIGN OF FOOTING		I	
28.	Foundation Design	No		
29.	Design consideration	No		
30.	Individual footings	No		
31.	Continuous footings	No		
32.	Continuous footings	No	[R5]	
33.	Stiffened matsunderreamed piles	No		
34.	Stiffened matsunderreamed piles	No		
35.	Stiffened matsunderreamed piles	No		
36.	Codal provisions.	No		
INIT V	STABILIZATION		·	
37.	Stabilization methods	No		
38.	Stabilization methods	No	[R3]	
39.	Stabilization methods	No	· · · J	

40.	Stabilization methods	No	
41.	Stabilization methods	No	
42.	Stabilization methods	No	
43.	Stabilization methods	No	
44.	Stabilization methods	No	
45.	Stabilization methods	No	

Teaching Strategies

The teaching in this course aims at establishing a good fundamental understanding of the areas covered using:

- Formal face-to-face lectures
- Tutorials, which allow for exercises in problem solving and allow time for students to resolve problems in understanding of lecture material.
- Laboratory sessions, which support the formal lecture material and also provide the student with practical construction, measurement and debugging skills.
- Small periodic quizzes, to enable you to assess your understanding of the concepts.

Evaluation Strategies

Cycle Test – I	-	5%
Cycle Test – II	-	5%
Model Test	-	5%
Assignment	-	5%
Attendance	-	10%
Final exam	-	70%

Prepared by: Mr. Vinothkumar, Assistant Professor, Department of Civil Engineering

Dated :

Addendum

ABET Outcomes expected of graduates of B.Tech / Civil / program by the time that they graduate:

- a. An ability to apply knowledge of mathematics, science, and engineering
- b. An ability to design and conduct experiments, as well as to analyze and interpret data
- c. An ability to design a hardware and software system, component, or process to meet desired needs within realistic constraints such as economic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability
- d. An ability to function on multidisciplinary teams
- e. An ability to identify, formulate, and solve engineering problems
- f. An understanding of professional and ethical responsibility
- g. An ability to communicate effectively
- h. The broad education necessary to understand the impact of engineering solutions in a global, economic, environmental, and societal context
- i. A recognition of the need for, and an ability to engage in life-long learning
- j. A knowledge of contemporary issues
- k. An ability to use the techniques, skills, and modern engineering tools necessary for engineering practice.

Program Educational Objectives

PEO1: PREPARATION

Civil Engineering graduates will have knowledge to apply the fundamental principles for a successful profession and/or for higher education in Civil Engineering based on mathematical, scientific and engineering principles, to solve realistic and field problems that arise in engineering and non engineering sectors

PEO2: CORE COMPETENCE

Civil Engineering graduates will adapt to the modern engineering tools and construction methods for planning, design, execution and maintenance of works with sustainable development in their profession.

PEO3: PROFESSIONALISM

Civil Engineering Graduates will exhibit professionalism, ethical attitude, communication and managerial skills, successful team work in various private and government organizations both at the national and international level in their profession and adapt to current trends with lifelong learning.

PEO4: SKILL

Civil Engineering graduates will be trained for developing soft skills such as proficiency in many languages, technical communication, verbal, logical, analytical, comprehension, team building, inter personal relationship, group discussion and leadership skill to become a better professional.

PEO5: ETHICS

Civil Engineering graduates will be installed with ethical feeling, encouraged to make decisions that are safe and environmentally-responsible and also innovative for societal improvement.

Course Teacher	Signature
Mr.Vinothkumar	

Course Coordinator

HOD/CIVIL