Academic Course Description

BHARATH UNIVERSITY Faculty of Engineering and Technology Department of Civil Engineering

BCE505 ENVIRONMENTAL ENGINEERING Fifth Semester, 2017-18(Odd Semester)

Course (catalog) description

The purpose of this course is tomake the students conversant with principles of water supply, treatment and distribution

Credit / Contact hours : 3 credits / 45hours

:

Course Coordinator : Ms.B.Saritha, Assistant Professor

Instructors

Name of the instructor	Class handling	Office location	Office phone	Email (domain:@ bharathuniv.ac.in	Consultation
Ms.B.Saritha	Third year Civil	Civil Block			9.00 - 9.50 AM
Ms.L.MariaSubashini	Third year Civil	Civil Block			12.45 - 1.15 PM

Relationship to other courses:

Pre –requisites	:	BCE406 Environmental Studies
Assumed knowledge	:	Basic knowledge in Environmental Science and management
Following courses	:	BCE055 Industrial Waste Treatment and Disposal, BCE074 Physical and Chemical Treatment of Water and Wastewater

Syllabus Contents

UNIT-I PLANNING FOR WATER SUPPLY AND SEWERAGE SYSTEMS

Public water supply System and Sewerage system – Design Period – Prediction of population during design period – Selection of Sources of Water supply – Conveyance of Raw Water - Treatment site – Piped Flow – Open Channel Flow – Layout of Water Treatment Plant.

UNIT-II WATER TREATMENT SYSTEMS

Raw water Quality – Impurities in Water – Water Quality Standards – Plain Sedimentation - Pumping to Chemical House – Coagulation – Hydraulic Jump / Flash Mixer - Clariflocculator – Rapid Sand Filtration – Iron & Manganese Removal - Post Chlorination – Clear Water Tank – Pumping to Overhead Tank.

UNIT-III WATER DISTRIBUTION SYSTEM

Water Distribution Layout – Service Reservoirs – Hydraulics of Flow in Pipes - Appurtenances – Construction Operation and maintenance – Leak Detection – Strom Water Network – Plumbing Work in Houses.

9

9

9

UNIT-IV COLLECTION AND CONVEYANCE OF DOMESTIC SEWAGE

9

Sewer Pipe Network – Sewage Treatment Site – Activated Sludge Process – Aeration Tank Design – Design of Secondary Settling Tank – Sludge Digester – Sludge Drying Beds – Re-Use of Treated Effluent – Selection of Pumps.

UNIT-V SOLID WASTE MANAGEMENT

9

Collection and Conveyance of Solid Wastes – Segregation of Solid Wastes – Sanitary Land Fill – Incineration – Recycling and Re-use Concepts – Disposal of Electronic Wastes.

TEXT BOOKS:

- 1. Garg S.K.Environmental Engineering, Vol.I & II, khanna Publishers, New Delhi, (1994).
- 2. Water Supply Engineeering, R.Pannirselvam, SPGS-Publications, Adambakkam, Chennai-600088, (2007).
- 3. Wastewater Engineering, SPGS-Publications, Adambakkam, Chennai-600088,(2007).
- 4. C.S.Shah, Water Supply Sanitation, Galgotia Publishing Company, New Delhi, (1994).

REFERENCE:

- 1. Manual on Water Supply and Treatment, CPHEEO, Ministry of Urban Development, Government of India, New Delhi, (1999).
- 2. Manual on Sewerage and Sewage Treatment, CPHEEO, Ministry of Urban Development, Government of India, New Delhi, (1993).
- 3. Wastewater Engineering Treatment and Re-Use, MetCalf & Eddy, Inc., Tata McGraw-Hill Publishing Company, New Delhi-(2003).

Computer usage: NIL

Professional component

•		
General	-	0%
Basic Sciences	-	0%
Engineering sciences & Technical arts	-	0%
Professional subject	-	100%

Broad area: Water and Wastewater Treatment

Test Schedule

S. No.	Test	Tentative Date	Portions	Duration
1	Cycle Test-1	August 1 st week	Session 1 to 14	2 Periods
2	Cycle Test-2	September 2 nd week	Session 15 to 28	2 Periods
3	Model Test	October 2 nd week	Session 1 to 45	3 Hrs
4	University	ТВА	All sessions / Units	3 Hrs.
4	Examination			

Mapping of Instructional Objectives with Program Outcome

This Course is to introduce the principles of various surveying methods and applications to Civil		Correlates	
Engineering projects.		program	
		outcom	ne
	Н	М	L
1. Plan water supply system for developing area	С	d	
2. Design the various treatment plant in water supply system	С	a,d,h	
3. Treat the drinking water using advanced techniques	С	d	k
4. Design the water distribution systems	С	d	а
5. Principles of design of water supply and drainage in buildings	С	a,d	

H: high correlation, M: medium correlation, L: low correlation

Draft Lecture Schedule

Session	Topics	Problem solving (Yes/No)	Text / Chapter
UNITI P	LANNING FOR WATER SUPPLY AND SEWERAGE SYSTEM	/IS	
1.	Public water supply System and Sewerage system	No	
2.	Design Period	Yes	[T1,T2 & R1]
3.	Prediction of population during design period	Yes	-
4.	Selection of Sources of Water supply	No	-
5.	Conveyance of Raw Water	No	-
6.	Treatment site	No	-
7.	Piped Flow	Yes	-
8.	Open Channel Flow	Yes	-
9.	Layout of Water Treatment Plant	No	-
	VATER TREATMENT SYSTEMS		
10.	Raw water Quality – Impurities in Water	No	
11.	Water Quality Standards	No	-
12.	Plain Sedimentation - Pumping to Chemical House –.	Yes	
13.	Coagulation – Hydraulic Jump / Flash Mixer	Yes	[T1, T2 & R1]
14.	Clariflocculator	Yes	-
15.	Rapid Sand Filtration	Yes	-
16.	Iron & Manganese Removal	No	1
17.	Post Chlorination – Clear Water Tank	Yes	7
18.	Pumping to Overhead Tank	No	7
UNIT-III	WATER DISTRIBUTION SYSTEM	·	
19.	Water Distribution Layout	No	
20.	Service Reservoirs	No	
21.	Hydraulics of Flow in Pipes	Yes	
22.	Appurtenances	No	
23.	Construction	No	[T2, T4 & R1]
24.	Operation and maintenance	No	
25.	Leak Detection	No	
26.	Strom Water Network	Yes	
27.	Plumbing Work in Houses	No	
UNIT-IV CO	LLECTION AND CONVEYANCE OF DOMESTIC SEWAGE		
28.	Sewer Pipe Network	No	
29.	Sewage Treatment Site	No]
30.	Activated Sludge Process	No	
31.	Aeration Tank Design	No	[T1, T3 & R2]

32.	Design of Secondary Settling Tank	Yes			
33.	Sludge Digester	No			
34.	Sludge Drying Beds	No			
35.	Re-Use of Treated Effluent	No			
36.	Selection of Pumps.	No	No		
UNIT-V SC	LID WASTE MANAGEMENT				
37.	Collection of Solid Wastes	No			
38.	Conveyance of Solid Wastes	No			
39.	Segregation of Solid Wastes	No			
40.	Sanitary Land Fill	No			
41.	Sanitary Land Fill	No	[T1, T3 & R3]		
42.	Incineration	No			
43.	Recycling Concepts	No			
44.	Re-use Concepts	No			
45.	Disposal of Electronic Wastes	No			

Teaching Strategies

The teaching in this course aims at establishing a good fundamental understanding of the areas covered using:

- Formal face-to-face lectures
- Tutorials, which allow for exercises in problem solving and allow time for students to resolve problems in understanding of lecture material.
- Laboratory sessions, which support the formal lecture material and also provide the student with practical construction, measurement and debugging skills.
- Small periodic quizzes, to enable you to assess your understanding of the concepts.

Evaluation Strategies

Cycle Test – I	-	5%
Cycle Test – II	-	5%
Model Test	-	5%
Attendance	-	10%
Assignmnet	-	5%
Final exam	-	70%

Prepared by: Ms.B.Saritha, Assistant Professor, Department of Civil

Dated :

Addendum

ABET Outcomes expected of graduates of B.Tech / Civil / program by the time that they graduate:

- a. An ability to apply knowledge of mathematics, science, and engineering
- b. An ability to design and conduct experiments, as well as to analyze and interpret data
- c. An ability to design a hardware and software system, component, or process to meet desired needs within realistic constraints such as economic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability
- d. An ability to function on multidisciplinary teams
- e. An ability to identify, formulate, and solve engineering problems
- f. An understanding of professional and ethical responsibility
- g. An ability to communicate effectively
- h. The broad education necessary to understand the impact of engineering solutions in a global, economic, environmental, and societal context
- i. A recognition of the need for, and an ability to engage in life-long learning
- j. A knowledge of contemporary issues
- k. An ability to use the techniques, skills, and modern engineering tools necessary for engineering practice.

Program Educational Objectives

PEO1: PREPARATION

Civil Engineering graduates will have knowledge to apply the fundamental principles for a successful profession and/or for higher education in Civil Engineering based on mathematical, scientific and engineering principles, to solve realistic and field problems that arise in engineering and non engineering sectors

PEO2: CORE COMPETENCE

Civil Engineering graduates will adapt to the modern engineering tools and construction methods for planning, design, execution and maintenance of works with sustainable development in their profession.

PEO3: PROFESSIONALISM

Civil Engineering Graduates will exhibit professionalism, ethical attitude, communication and managerial skills, successful team work in various private and government organizations both at the national and international level in their profession and adapt to current trends with lifelong learning.

PEO4: SKILL

Civil Engineering graduates will be trained for developing soft skills such as proficiency in many languages, technical communication, verbal, logical, analytical, comprehension, team building, inter personal relationship, group discussion and leadership skill to become a better professional.

PEO5: ETHICS

Civil Engineering graduates will be installed with ethical feeling, encouraged to make decisions that are safe and environmentally-responsible and also innovative for societal improvement.

Course Teacher	Signature
Ms.B.Saritha	
Ms.L.MariaSubashini	

Course Coordinator

HOD/CIVIL