Course Number and Name

BCE093 - REMOTE SENSING AND GIS

Credits and Contact Hours

3 & 45

Course Coordinator's Name

Dr.A.Mani

Text Books and References

TEXT BOOKS:

• Anji Reddy, "Remote Sensing and Geographical Information Systems", BS Publications 2001

REFERENCES:

- Anand P.H,"Principles of remote Sensing and Geographical Information Systems", Sri Venkateswara Publishers, 2003.
- Lillesand T.M and Kiefer R.W. Remote sensing and Image, Interpretation, John Wiley and Sons, INC, New York, 1987.
- Burrough P A,"Principle of GIS for land resource assessment", Oxford University, 1990

Course Description

- To introduce the students to the basic concepts and principles of various components of remote sensing.
- To provide an exposure to GIS and its practical applications in civil engineering.

Prerequisites	Co-requisites							
Engineering Physics – II	NIL							
required, elective, or selected elective (as per Table 5-1)								

Cou	rse Outco	ome	s (COs)											
CO1	Ĺ	Apply the concepts of Electro Magnetic energy, spectrum and spectral signature curves in the practical problems												
CO2	2	Apply the concepts of satellite and sensor parameters and characteristics of different platforms												
CO3	3	Apply the concepts of DBMS in GIS												
CO4	CO4 Analyze raster and vector data and modeling in GIS													
COS	5	Apply GIS in land use, disaster management, ITS and resource information system												
Stud	lent Outc	come	es (SOs)	from C	riterion	3 covered	ed by th	is Cours	e					
	COs/SO	Os	а	b	с	d	e	f	g	h	i	j	k	
	CO1					Н	Н				Н			
	CO2					Н	Н				Н			
	CO3					Н	Н				Н			1

	CO4				Н	Н				Н		
	CO5				Н	Н				Н		
List of Topics Covered												

UNIT I REMOTE SENSING

Definition Historical Components of Remote Sensing Principles & methods of remote sensing - Active and Passive remote sensing - Remote Sensing platforms -Electro magnetic radiation- Spectrum- Block body radiation – planks law – Stefan – Boltzmann law – satellites classification – based on orbit- sun synchronous and Geosynchronous based on purpose Earth Resources satellites, communication satellite Weather satellites Spy satellites Sensors Description of sensor in landscape, spot, IRS series and current satellites- Radar SLAR-and SAR.

UNIT II EMR INTERACTIONS

Interaction with atmosphere Scattering of EMR Raleigh, Mie, Non Selective and Raman Scattering Bach scattering Speckle EMR Interaction with water and Ozone Atmospheric windows and its significance EMR interaction with the earth surface materials Radiance, irradiance, Absorbed and Transmitting energy – reflectance- Specular- and diffuse surface- Spectral signature – and curves EMR interaction with soil Resolution Spectral, Spatial, Radiometric, and Temporal.

UNIT III RESOURCES ENGINEERING

Characteristics of Digital satellite image enhancement Filtering Applications of Aerial photographs and satellite imageries – merits – Limitations – Water resources – watershed management – Urban Studies – Flood Management- Fishing Forestry etc.,

UNIT IV GEOGRAPHIC INFORMATION SYSTEM

GIS – Components of GIS – Hardware, Software and Organisational Context – Data – Spatial and Non-Spatial – Maps – Types of Maps – Projection – Types of Projection - Data Input – Digitizer, Scanner – Editing – Raster and Vector data structures – Comparison of Raster and Vector data structure – Analysis using Raster and Vector data – Retrieval, Reclassification, Overlaying, Buffering – Data Output – Printers and Plotters.

UNIT V MISCELLANEOUS TOPICS

Visual Interpretation of Satellite Images – Elements of Interpretation - Interpretation Keys Characteristics of Digital Satellite Image – Image enhancement – Filtering – Classification - Integration of GIS and Remote Sensing – Application of Remote Sensing and GIS – Urban Applications- Integration of GIS and Remote Sensing – Application of Remote Sensing and GIS – Water resources – Urban Analysis – Watershed Management – Resources Information Systems

9

9

9

9

9