Course Number and Name

BCE094 - OPTIMIZATION TECHNIQUES

Credits and Contact Hours

3 & 45

Course Coordinator's Name

Dr.Krishnakumar

Text Books and References

TEXT BOOKS:

• Rao S.S,"Optimization – Theory and applications", Wiley Easter Ltd., 1979.

REFERENCES:

- David G.Luerbeggan, "Introduction to Linear and Non Linear Programming", Addison Wesley Publishing Co. 1973.
- Hadley G. "Nonlinear and dynamic programming" Addison Wesley Publishing Co. 1964.
- Cordan C.C. Beveridge and Robert S. Schedther, "Optimization, Theory and Practice" McGraw Hill Co.1970.
- HarndyA.Tahh. "operations Research, An Introduction", Macmillan Publishers Co.NewYork, 1982.
- Beightferand S. others, "Foundations of Optimization Pill", New Delhi, 1979.

Course Description

• To introduce the students to the basic concepts and principles of optimization, linear programming and queuing theory

Prerequisites	Co-requisites								
Fundamentals of Computing and Programming	NIL								
required, elective, or selected elective (as per Table 5-1)									

Course Outcomes (COs)														
COI	l	Understanding the Concept of optimization and classification of optimization problems.										lems.		
CO2	2	Formulation simplex methods variable with upper bounds												
CO3	3	Study the Queuing Model, poison and exponential distributions												
CO4	1	Understand the maximization and minimization of convex functions												
CO5 To study equality constraints, inequality constraints								S						
Student Outcomes (SOs) from Criterion 3 covered by this Course														
	COs/S	Os	а	b	с	d	e	f	g	h	i	j	k	
	CO								М	Н				
	CO2	2							М	Н				
	COS	3	L			М			М	Н				
	CO4	ļ							М	Н				

	CO5							М	Н				
List	of Topics	Covered	1							<u> </u>			<u> </u>
UN	UNIT I INTRODUCTION 8												
Con	Concept of optimization – classification of optimization – problems.												
UN	UNIT II LINEAR PROGRAMMING												
Exa prin tran prot	Examples of linear programming problems – formulation simplex methods variable with upper bounds – principle- duality -dual simplex method - sensitivity analysis – revised simplex procedure – solution of the transportation problem – assignment – network minimization – shortest route problem – maximal two problem – L.P. representation of networks.												
UN	IT III	QUEUI	NG TH	EORY								9	
Queuing Model, poison and exponential distributions -Queues with combined arrivals and departures- random and series queues.													
UN	IT IV	UNCO	NSTRA	INED ()PTIMI	ZATIO	N					9	
Maximization and minimization of convex functions. Necessary and sufficient conditions for local minima – speed and order of convegence – unibariate search – steepest and desent methods- metcher reeves method -conjugate gradient method.													
UN	IT V	CONST	RAINE	D OPT	IMIZA	TION						9	
Nec grac	Necessary and sufficient condition – equality constraints, inequality constraints -kuhu – tucker conditions – gradient projection method – penalty function methods – cutting plane methods of sibel directions.										ons –		