Course Number and Name

BME202 - ENGINEERING MECHANICS

Credits and Contact Hours

3 & 60

Course Coordinator's Name

Mr.D.Ravi

Text Books and References

TEXT BOOK:

- 1. Beer, F.P and Johnson Jr. E.R, "Vector Mechanics for Engineers: Vol. 1 Statics and vol. 2 Dynamics", McGraw-Hill International Edition, 2013.
- 2. Rajasekaran, S, Sankarasubramanian, G., Fundamentals of Engineering Mechanics, Vikas Publishing House Pvt., Ltd., 2011.

REFERENCES :

- 1. Kumar, K. L Kumar, V., Engineering Mechanics, Tata McGraw Hill, New Delhi, 2010
- 2. Palanichamy, M.S., Nagan, S., Engineering Mechanics Statics & Dynamics, Tata McGraw Hill, 2013.
- 3. Timoshenko, and Young, Engineering Mechanics, Tata McGraw-Hill, New Delhi, 2013.
- 4. Irving H. Shames, Engineering Mechanics Statics and Dynamics, IV Edition Pearson Education Asia Pvt., Ltd., 2006.

Cou	rse Desc	ripti	on												
To understand the concept of basic engineering mechanism															
Prerequisites								Co-requisites							
		Engineering Physics –I						Engineering Mathematics II							
Engineering Mathematics I															
required, elective, or selected elective (as per Table 5-1)															
Course Outcomes (COs)															
CO	l	Students will understand the concepts of engineering mechanics													
CO2	2	Stu	dents w	ill under	stand th	e vector	rial repro	esentatio	on of for	ces and	momen	ts			
CO3		Students will gain knowledge regarding center of gravity and moment of inertia and apply													
		them for practical problems.													
CO4		Students will gain knowledge regarding various types of forces and reactions and tom draw													
		free body diagram to quicker solutions for complicated problems.													
CO5		Student will gain knowledge in solving problems involving work and energy													
C06		Student will gain knowledge on friction on equilibrium and its application													
Student will gain knowledge on metion on equilibrium and its application.															
Student Outcomes (SOs) from Criterion 3 covered by this Course															
	COs/S	Os	а	b	с	d	e	f	g	h	i	j	k		
	CO1	-	Н	Н	L	Н		Н		L		Н	Н		
	CO2	2						Н	Н	L					
				l					L	I		l			

	CO3						Н	Н	L	М	
	CO4						Н	Н	L	М	
	CO5						Н	Н	L	М	
	CO6						Н	Н	L	М	
List of Tonics Covered											

List of Topics Covered

UNIT I BASICS AND STATICS OF PARTICLES

Introduction - Units and Dimensions - Laws of Mechanics – Lame's theorem, Parallelogram and triangular Law of forces – Vectors –Vectorial representation of forces and moments – Vector operations on forces - Coplanar Forces – Resolution and Composition of forces – Resultant of several concurrent forces - Equilibrium of a forces – Forces in space - Equilibrium of particle in space - Equivalent systems of forces – Principle of transmissibility – Single equivalent force.

UNIT II EQUILIBRIUM OF RIGID BODIES

Free body diagram – Types of supports and their reactions – requirements of stable equilibrium – Moments and Couples – Moment of a force about a point and about an axis –Vectorial representation of moments and couples – Scalar components of a moment – **Varignon's theorem** - Equilibrium of Rigid bodies in two dimensions -Equilibrium of Rigid bodies in three dimensions.

UNIT III PROPERTIES OF SURFACES AND SOLIDS

Determination of areas – First moment of area and the Centroid of standard sections – T section, I section, Composite figures, Hollow section – second moments of plane area – Rectangle, triangle, circle - T section, I section, Hollow section – Parallel axis theorem and perpendicular axis theorem – Polar moment of inertia – Principal moments of inertia of plane areas – Principal axes of inertia – Basic concept of Mass moment of inertia.

UNIT IV FRICTION

Frictional force – Laws of Coloumb friction – Cone of friction – Angle of repose – Simple contact friction – Sliding of blocks – Wedge friction - Ladder friction – Screw Jack – Belt friction - Rolling resistance.

UNIT V DYNAMICS OF PARTICLES

Displacements, Velocity and acceleration, their relationship – Relative motion – Relative acceleration – Curvilinear motion of particles – **Newton's law** – work energy equation – impulse and Momentum – Impact of elastic bodies.

12

12

12

12