6

6

6

Academic Course Description

BHARATH UNIVERSITY Faculty of Engineering and Technology Department of Electrical and Electronics Engineering BME203 - BASIC MECHANICAL ENGINEERING Second Semester (Even Semester)

Course (catalog) description

The program educational objectives (PEOs) for the mechanical-engineering program are to educate graduates who will be ethical, productive, and contributing members of society.

The broad education necessary to understand the impact of engineering solutions in a global, economic, environmental, and societal context.

The ability to apply principles of engineering, basic science, and mathematics to design and realize physical systems, components, or processes

Compulsory/Elective course	:	Compulsory for all branch students
Credit & Contact hours	:	2 and 30 hours
Course Coordinator	:	Mr.Saravana Kumar
Instructors	:	Mr.Saravana Kumar

Name of the instructor	Class handling	Office location	Office phone	Email (domain:@ bharathuniv.ac.in	Consultation
Mr. Saravana Kumar	First Year Building	First Year Building	04422290125	askumarwins@gmail.com	1:00 p.m – 1:30 p.m

Relationship to other courses

Pre -requisites:+2 Level Maths & Physical ScienceAssumed knowledge:By understanding about mechanical knowledge in various fields

Syllabus Contents

UNIT I ENERGY RESOURCES AND POWER GENERATION

Renewable and Non-renewable resources- solar, wind, geothermal, steam, nuclear and hide power plants Layout, major components and working. Importance of Energy storage, Environmental constraints of power generation using fossil fuels and nuclear energy.

UNIT II IC ENGINES

Classification, working principles of petrol and diesel engines- two stroke and four stroke cycles, functions of main components of I.C engine. Alternate fuels and emission control.

UNIT III REFRIGERATION AND AIR-CONDITIONINGSYSTEM

Terminology of Refrigeration and Air-Conditioning, Principle of Vapor Compression & Absorption system-Layout of typical domestic refrigerator- window & Split type room air conditioner.

UNIT IV MANUFACTURING PROCESSES

description of Mould makes and casting process, Metal forming, Classification types of forging, forging operations, Brief description of extrusion, rolling, sheet forging, and drawing. Brief description of welding, brazing and soldering. Principal metal cutting processes and cutting tools, Brief description of Centre lathe and radial drilling machine.

UNIT V MECHANICAL DESIGN

Mechanical properties of material-Yield strength, ultimate strength, endurance limit etc., Stress-Strain curves of materials. Stresses induced in simple elements. Factor of safety - Design of Shafts and belts. Types of bearings and its applications. Introduction to CAD/CAM/CIM & Mechatronics

Total: 30 hr

6

TEXTBOOKS: 1. T.J.Prabhuetal, "Basic Mechanical Engineering", SciTech Publications(p)Ltd,2000

REFERENCES: 1. NAGPAL,G.R,"PowerplantEngineering",KhannaPublishers,2004.

- 2. RAO.P.N, "ManufacturingTechnology", TataMcGraw-HillEducation, 2000.
- 3. Kalpakjian, "ManufacturingEngineeringandTechnology", AdissoWesleypublishers, 1995.
- 4. Ganesan.V, "Internal combustionengines", TataMcGraw-HillEducation, 2000.
- 5. C.P.Arora, "Refrigeration and Air Conditioning", TataMcGraw-HillEducation, 2001.
- 6. V.B.Bhandari, "Design of Machine elements", Tata McGraw-HillEducation, 2010.

Computer usage: Animation Videos

Professional component

-	0%
-	0%
-	100%
-	0%
	- - -

Broad area: Mechanical

Test Schedule

S. No.	Test	Tentative Date	Portions	Duration
1	Cycle Test-1	February 1 st week	Session 1 to 12	2 Periods
2	Cycle Test-2	March 1 st week	Session 13 to 24	2 Periods
3	Model Test	April 2 nd week	Session 1 to 30	3 Hrs
4	University Examination	ТВА	All sessions / Units	3 Hrs.

Mapping of Instructional Objectives with Program Outcome

Familiarize the students with the Basics and fundamental concepts of		Correlates to		
Engineering and to highlight the approaches in organization behavior		program c	program outcome	
	Н	М	L	
1. An ability to apply knowledge of mathematics	d	a,b,c,e,g	j,k	
2. An ability to apply knowledge of science, and engineering	a,d,e	b,c,g	j,k	
3. Ability to design and conduct experiments, as well as to analyze and interpret data.	a,d,e	b,c,g	j,k	
4. An ability to function on multi-disciplinary teams	a,d	b,c,g	j,k	
5. To provide basic Knowledge of basic manufacturing process.	a,d	b,c,g	j,k	
6. Ability to identify, formulate, and solve engineering problems	a,d	b,g	j,k	

H: high correlation, M: medium correlation, L: low correlation

Draft Lecture Schedule

Session	Topics	Problem Solving (Yes/No)	Text / Chapter		
UNIT I E	NERGY RESOURCES AND POWER GENERATION				
1.	Renewable and Non-renewable resources- solar power plants Layout	No	Unit I		
2.	Wind, geothermal, steam power plants Layout	No	T1/R1		
3.	Nuclear and hide power plants Layout	yout No			
4.	Major components and working of Power plant	No			
5.	Environmental constraints of power generation using fossil fuels No				
6.	Nuclear energy. No				
UNIT II I	UNIT II IC ENGINES				
7.	Classification of I.C Engines	No			
8.	Working principles of Petrol Engines No		Unit II		
9.	Working principles of Diesel Engines	No	T1/R4		
10.	Two stroke and four stroke cycles	No			

11.	Functions of main components of I.C engine	No	
12.	Alternate fuels and emission control No		
NIT III	REFRIGERATION AND AIR-CONDITIONINGSYSTEM		
13.	Terminology of Refrigeration and Air-Conditioning	No	
14.	Principle of Vapor Compression Refrigeration system	No	
15.	Principle of Vapor Absorption Refrigeration system	No Unit I	
16.	Layout of typical domestic refrigerator	No	
17.	Layout of window type room air conditioner	No	-
18.	Layout of Split type room air conditioner	No	-
NIT IV	MANUFACTURING PROCESSES		
19.	description of Mould makes and casting process	No	
20.	Metal forming, Classification types of forging, forging operations	No	Unit III
21.	Brief description of extrusion, rolling, sheet forging, and drawing	No	T1/R5
22.	Brief description of welding, brazing and soldering	No	-
23.	Principal metal cutting processes and cutting tools	No	-
24.	Brief description of Centre lathe and radial drilling machine.	No	-
NIT V	MECHANICAL DESIGN		
	Mechanical properties of material-Yield strength, ultimate		-
25.	strength, endurance limit etc	No	Unit III T1/R5
26.	Stress-Strain curves of materials	No	11/103
27.	Stresses induced in simple elements, Factor of safety	No	-
28.	Design of Shafts and belts	No	-
29	Types of bearings and its applications	No	-
30.	Introduction to CAD/CAM/CIM & Mechatronics		

The teaching in this course aims at establishing a good fundamental understanding of the areas covered using:

- Formal face-to-face lectures
- Tutorials, which allow for exercises in problem solving and allow time for students to resolve problems in understanding of lecture material.
- Laboratory sessions, which support the formal lecture material and also provide the student with practical construction, measurement and debugging skills.
- Small periodic quizzes, to enable you to assess your understanding of the concepts.

Evaluation Strategies

-	5%
-	5%
-	10%
-	5%
-	5%
-	70%
	- - - -

Prepared by

: Mr.Saravana Kumar

Dated :

ABET Outcomes expected of graduates of B.Tech / EEE / program by the time that they graduate:

- a) An ability to apply knowledge of mathematics, science, and engineering fundamentals.
- b) An ability to identify, formulate, and solve engineering problems.
- c) An ability to design a system, component, or process to meet the desired needs within realistic constraints such as economic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability.
- d) An ability to design and conduct experiments, as well as to analyze and interpret data.
- e) An ability to use the techniques, skills, and modern engineering tools necessary for engineering practice.
- f) An ability to apply reasoning informed by the knowledge of contemporary issues.
- g) An ability to broaden the education necessary to understand the impact of engineering solutions in a global, economic, environmental, and societal context.
- h) An ability to understand professional and ethical responsibility and apply them in engineering practices.
- i) An ability to function on multidisciplinary teams.
- j) An ability to communicate effectively with the engineering community and with society at large.
- k) An ability in understanding of the engineering and management principles and apply them in project and finance management as a leader and a member in a team.
- 1) An ability to recognize the need for, and an ability to engage in life-long learning.

Program Educational Objectives

PEO1: PREPARATION

Electrical Engineering Graduates are in position with the knowledge of Basic Sciences in general and Electrical Engineering in particular so as to impart the necessary skill to analyze and synthesize electrical circuits, algorithms and complex apparatus.

PEO2: CORE COMPETENCE

Electrical Engineering Graduates have competence to provide technical knowledge, skill and also to identify, comprehend and solve problems in industry, research and academics related to power, information and electronics hardware.

PEO3: PROFESSIONALISM

Electrical Engineering Graduates are successfully work in various Industrial and Government organizations, both at the National and International level, with professional competence and ethical administrative acumen so as to be able to handle critical situations and meet deadlines.

Electrical Engineering Graduates have better opportunity to become a future researchers/ scientists with good communication skills so that they may be both good team-members and leaders with innovative ideas for a sustainable development.

PEO5: ETHICS

Electrical Engineering Graduates are framed to improve their technical and intellectual capabilities through life-long learning process with ethical feeling so as to become good teachers, either in a class or to juniors in industry.

BME203 - BASIC MECHANICAL ENGINEERING

Course Teacher	Signature
Mr.Saravana Kumar	

Course Coordinator

HOD/EEE

)

(

(Mr.Saravana Kumar)