Academic Course Description

BHARATH UNIVERSITY Faculty of Engineering and Technology Department of Electrical and Electronics Engineering BEE051 & DISTRIBUTED GENERATION ANDMICROGRID Fifth Semester (Core Elective I) (odd Semester)

Course (catalog) description

•To illustrate the concept of distributed generation

- •To analyze the impact of grid integration.
- To study concept of Micro grid and its configuration

Compulsory/Elective course: Elective for EEE students

Credit hours : 3 credits

Course Coordinator : Mrs.Anitha Sampath kumar

Instructors : Mr.P.Kathiravan

Name of the instructor	Class handling	Office location	Office phone	Email (domain:@ bharathuniv.ac.in	Consultation
Mr.P.Kathiravan	Final year EEE	KS 303		Kathirped@gmail.com	9.00-9.50 AM

Relationship to other courses:

Pre – requisites : BME203 - Basic Mechanical Engineering

Syllabus Contents

UNIT I INTRODUCTION

Conventional power generation: advantages and disadvantages, Energy crises, Non - conventional energy (NCE) resources: review of Solar PV, Wind Energy systems, Fuel Cells, micro-turbines, biomass, and tidal sources.

UNIT II DISTRIBUTED GENERATIONS (DG)

Concept of distributed generations, topologies, selection of sources, regulatory standards/ framework, Standards for interconnecting Distributed resources to electric power systems: IEEE 1547. DG installation classes, security issues in DG implementations. Energy storage elements: Batteries, ultra-capacitors, flywheels. Captive power plants

UNIT III IMPACT OF GRID INTEGRATION

Requirements for grid interconnection, limits on operational parameters,: voltage, frequency, THD, response to grid abnormal operating conditions, islanding issues. Impact of grid integration with NCE sources on existing power system: reliability, stability and power quality issues.

9

9 01)

9

UNIT IV BASICS OF A MICROGRID

Concept and definition of microgrid, microgrid drivers and benefits, review of sources of microgrids, typical structure and configuration of a microgrid, AC and DC microgrids, Power Electronics interfaces in DC and AC microgrids,

UNIT V CONTROL AND OPERATION OF MICROGRID

Modes of operation and control of microgrid: grid connected and islanded mode, Active and reactive power control, protection issues, anti-islanding schemes: passive, active and communication based techniques, microgrid communication infrastructure, Power quality issues in microgrids, regulatory standards, Microgrid economics, Introduction to smart microgrids

Reference Books:

- R1. AmirnaserYezdani, and Reza Iravani, "Voltage Source Converters in Power Systems: Modeling, Control and Applications", IEEE John Wiley Publications, 2009.
- R2 DorinNeacsu, "Power Switching Converters: Medium and High Power", CRC Press, Taylor & Francis, 2006.

R3 Chetan Singh Solanki, "Solar Photo Voltaics", , PHI learning Pvt. Ltd., New Delhi, 2009

- R4 J.F. Manwell, J.G "Wind Energy Explained, Theory Design and Applications,".McGowan Wiley publication, 2nd Edition, 2009.
- R5 D. D. Hall and R. P. Grover, "Biomass Regenerable Energy", John Wiley, New York, 1987. John Twidell and Tony Weir, "Renewable Energy Resources", Taylor and Francis Publications,

Second Edition, 2006

Computer usage:

Professional component

General	-	0%
Basic Sciences	-	0%
Engineering sciences & Technical arts	-	0%
Professional subject	-	100%

Broad area :

Test Schedule

S. No.	Test	Tentative Date	Portions	Duration
1	Cycle Test-1	August 1 st week	Session 1 to 14	2 Periods
2	Cycle Test-2	September 2 nd week	Session 15 to 28	2 Periods

9

9

3	Model Test	October 2 nd week	Session 1 to 45	3 Hrs
4	University	TBA	All sessions / Units	3 Hrs.
4	Examination			

Mapping of Instructional Objectives with Program Outcome

To illustrate the concept of distributed generation		Correlates	to
• To analyze the impact of grid integration.		program o	utcome
• To study concept of Microgrid and its configuration	Н	Μ	L
1. Review the conventional power generation		a,b,c,e,j,l	k
2. Analyze the concept of distributed generation and installation	a,c,e,	k,l	
3. Design the grid integration system with conventional and non- conventional energy sources	d	a,e,g	
4. Design the dc and ac micro grid	a,d	b,e,j	
5. Analyze power quality issues and control operation of micro grid		b,c,e,k,l	j

H: high correlation, M: medium correlation, L: low correlation

Draft Lecture Schedule

S.NO	Topics	Problem solving (Yes/No)	Text / Chapter
UNIT I			
1.	Conventional power generation:	NO	
2.	advantages and disadvantages Page 3 of 8	NO	

3.	Energy crises	NO	
4.	Non - conventional energy (NCE) resources: review of Solar	NO	
	PV		[R1], [R5]
5.	Wind Energy systems,	NO	-
6.	Fuel Cells	NO	—
7.	micro-turbines	NO	
8.	biomass,	NO	
9.	tidal sources	NO	
UNIT II		1	
10.	Concept of distributed generations	NO	
11.	topologies,	NO	
12.	selection of sources	NO	
13.	regulatory standards/ framework,	NO	
14.	Standards for interconnectingDistributed resources to electric	NO	
	power systems: IEEE 1547.		
15.	. DG installation classes	NO	[[] 1]
16.	security issues in DG implementations.	NO	[K1]
17.	Energy storage elements: Batteries, ultra-capacitors, flywheels. Captive power plants	NO	
18.	Revising the entire unit	NO	
UNIT III	· · · · ·		
19.	Requirements for grid interconnection, limits on operational	NO	
	parameters		
20.	voltage,	NO	
21.	frequency	NO	
22.	THD,	NO	
23.	, islanding issues	NO	[D1] [D5]
24.	Impact of grid integration with NCE sources on existing power system: reliability,	NO	[K1], [K3]
25.	stability	NO	
26.	power quality issues.	NO	_
27.	response to grid abnormal operating conditions	NO	
28.	Revising the entire unit	NO	
UNIT IV			·
29.	Concept and definition of microgrid	NO	
30.	microgrid drivers	NO	
31.	benefits,	NO	

32.	review of sources of microgrids,	NO	
33.	typical structure	NO	-
34.	configuration of a microgrid,	NO	-
35.	AC and DC microgrids	NO	[D1] [D5]
36.	Power Electronics interfaces in DC and AC microgrids,	NO	- [K1], [K3]
37.	Continuation of previous class	NO	-
38.	Revising the entire unit	NO	
UNIT V			
39.	Modes of operation and control of microgrid	NO	
40.	grid connected and islanded mode	NO	[D2]
41.	Active and reactive	NO	- [K2]
42.	power control,	NO	
43.	protection issues, anti-islanding schemes: passive, active and communication based techniques	NO	-
44.	microgrid communication infrastructure, Power quality issues in microgrids,	NO	
45.	regulatory standards, Microgrid economics, Introduction to smart microgrids.	NO	

Teaching Strategies

The teaching in this course aims at establishing a good fundamental understanding of the areas covered using:

- Formal face-to-face lectures
- Tutorials, which allow for exercises in problem solving and allow time for students to resolve problems in understanding of lecture material.
- Laboratory sessions, which support the formal lecture material and also provide the student with practical construction, measurement and debugging skills.
- Small periodic quizzes, to enable you to assess your understanding of the concepts.

Evaluation Strategies

-	10%
-	10%
-	25%
-	5%
-	50%
	- - - -

Prepared by:

Dated :

Addendum

ABET Outcomes expected of graduates of B.Tech / EEE / program by the time that they graduate:

a) An ability to apply knowledge of mathematics, science, and engineering fundamentals.

b) An ability to identify, formulate, and solve engineering problems.

- c) An ability to design a system, component, or process to meet the desired needs within realistic constraints such as economic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability.
- d) An ability to design and conduct experiments, as well as to analyze and interpret data.
- e) An ability to use the techniques, skills, and modern engineering tools necessary for engineering practice.
- f) An ability to apply reasoning informed by the knowledge of contemporary issues.
- g) An **ability to** broaden the education necessary to understand the impact of engineering solutions in a global, economic, environmental, and societal context.
- h) An ability to understand professional and ethical responsibility and apply them in engineering practices.
- i) An ability to function on multidisciplinary teams.
- j) An ability to communicate effectively with the engineering community and with society at large.
- k) An ability in understanding of the engineering and management principles and apply them in project and finance management as a leader and a member in a team.
- I) An ability to recognize the need for, and an ability to engage in life-long learning.

Program Educational Objectives

PEO1: PREPARATION

Electrical Engineering Graduates are in position with the knowledge of Basic Sciences in general and Electrical Engineering in particular so as to impart the necessary skill to analyze and synthesize electrical circuits, algorithms and complex apparatus.

PEO2: CORE COMPETENCE

Electrical Engineering Graduates have competence to provide technical knowledge, skill and also to identify, comprehend and solve problems in industry, research and academics related to power, information and electronics hardware.

PEO3: PROFESSIONALISM

Electrical Engineering Graduates are successfully work in various Industrial and Government organizations, both at the National and International level, with professional competence and ethical administrative acumen so as to be able to handle critical situations and meet deadlines.

PEO4: SKILL

Electrical Engineering Graduates have better opportunity to become a future researchers/ scientists with good communication skills so that they may be both good team-members and leaders with innovative ideas for a sustainable development.

PEO5: ETHICS

Electrical Engineering Graduates are framed to improve their technical and intellectual capabilities through life-long learning process with ethical feeling so as to become good teachers, either in a class or to juniors in industry.

BEE051&DISTRIBUTED GENERATION AND MICROGRID

Course Teacher	Signature
Mrs.Anitha Sampathkumar	

Course Coordinator (Mrs.Anitha Sampathkumar)

HOD/EEE