12

Energy and Power Spectral Densities

In this chapter we study energy and power spectra and their relations to signal duration, periodicity
and correlation functions.

12.1 Energy Spectral Density

Let f(t) be an electric potential in Volt applied across a resistance of R = 1 ohm. The total
energy dissipated in such a resistance is given by

E= /jo {f?(@t)/R} dt. (12.1)

Since the resistance value is unity the dissipated energy may be also be referred to as normalized
energy. In what follows we shall refer to it simply as the dissipated energy, with the implicit
assumption that it is the energy dissipated into a resistance of 1 ohm.

We recall Parseval’s theorem which states that if a function f (¢) is generally complex and if
F (jw) is the Fourier transform of f (¢) then

oo 1 oo
[Tirora=o [ PGP (12:2)
J —oo T J o
The energy in the resistance may therefore be written in the form

E:/_oo £ () dt = % PG, (12.3)

The function |F (jw)|2 is called the energy spectral density, or simply the energy density, of f (¢).
It is attributed the special symbol 55 (w), that is,

ers (W) EIF (jw)|*. (12.4)

We note that its integral is equal to 27 times the signal energy

fo %/w erp (W) dw (12.5)

—o0

hence the name ’spectral density’.
Given two signals f1 (¢) and f2 (¢), where fi (t) represent a current source and f> (¢) the voltage
that the current source produces across a resistance R of 1 ohm, we have

E= / f1 (@) f2 (t) dt. (12.6)
Parseval’s or Rayleigh’s theorem is written

/_O:O Fi () fo () dt = % /_o; Fi (—jw)F (jw) dow. (12.7)
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If f1 (¢t) and f2 (t) are real

Fi (—jw) = Ff (jw), Fa(—jw) = F" (jw). (12.8)

The normalized cross-energy or simply cross-energy is therefore given by

Bup= [ 50 n0d= o [ F ()P (o) do. (129)

The function
enfs (W) EFT (jw) F2 (jw) (12.10)
is called the cross-energy spectral density. The cross energy of the two signals is then given by
1 [

= - . €F1 fo (w)dw. (12.11)

Example 12.1 Consider the ideal lowpass filter frequency response shown in Fig. 12.1. We have

H(jo)
A

-Q/2 0 Q2 ®

FIGURE 12.1
Ideal lowpass filter frequency response.

H (jw) = Allgys () = Afu(w+Q/2) —u(w - /2)}.
The filter’s impulse response is given by
h(t)=F ' [H (jw)] = g—SSa (Qt/2).
The energy spectral density of h (t) is given by
enn (W) = |H (jw)* = Aoz (w).

We may evaluate the energy of h (¢) in a finite band of frequency, say, Q/4 < |w| < Q/2, as
shown in Fig. 12.2.

-Q/2 0 Q2 ®

FIGURE 12.2
A frequency band of lowpass filter response.
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Q/2 2
E(Q/4, Q/2) = 2 A = 24 (12.12)
27 Joya 4
The total energy of h (t) is given by
oo A2 e}
E :/ R (t)dt = FQQ/ Sa® (Qt/2)dt. (12.13)
— o ™ —o0
It is easier, however, to evaluate the energy using Rayleigh’s theorem. We write
2 (Y2 A%Q
= — dw = . 12.14
2 J, enn(w)de 27 ( )

We note that we have thus evaluated in passing the integral of the square of the sampling function.
In particular, we found that

A20° [~ A20
E= g /700 Sa” (Qt/2)dt = 5 (12.15)
Substituting Q¢/2 = x, we have
/ Sa® (x)dz = . (12.16)

Example 12.2 Let
v (t) = Acosw.t

and
or (t) =v () Iz (t) =v (@) {ut+T/2) —u(t-T/2)}.

Evaluate the energy spectral density of this truncated sinusoid shown in Fig. 12.35.

B LLLT .

FIGURE 12.3
Truncated sinusoid.

We have
My)s (t) <= T Sa (wT/2)

AT
Vi (jw) &F [or (1)) = 55 {8 [(w — we) T/2) + Sa[(w +we) T/2]}
wherefrom the energy spectral density is given by

Eopor (W) = |V (jw)|? = (A’T?/4) {Sa® [(w — we) T/2]
+ Sa? (w4 we)T/2] 4+ 2Sa [(w — we) T/2] Sa[(w + we) T/2]}

and is shown graphically in Fig. 12.4.
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£, ()

HON ¢ ®

FIGURE 124
Energy spectral density.

12.2 Average, Energy and Power of Continuous-time Signals

The average normalized power, or simply average power, of a signal f (t) is defined by

— 1 r
2D i 2
P02 jim 57 [ 15w (12.17)
The energy E, as seen above, is given by
oo 1 oo
E= / fAt)dt = o |F(jw)|*dw. (12.18)
—o0 T J-—x

A signal which has a finite energy E has an average power [2 (t) of zero. Such a signal is called an
energy signal.

A power signal is one that has infinite energy and finite non-nil average power, i.e. 0 < f2 () <
oo. A periodic signal is a power signal. Its average power P is evaluated as its power over one
period.

Let f (t) be periodic of period Typ. Its average normalized power, or simply average power, is
given by

. 1 [To/2 5 1 [To/2 .
P=F =7 [ 1t0Fd=7 [ a5 (12.19)
To —Ty/2 To —To/2
From Parseval’s relation for periodic functions
1 To/2 5 ad )
o IF@)Pdt= " |Fu|?. (12.20)
0 J-Ty/2 n=-—oo

The average power of a periodic signal is thus given by the sum

[e')

P=2(t)= Y [P (12.21)

n=—oo

12.3 Discrete-Time signals

For discrete-time signals the energy and average power are similarly defined. If a sequence f [n]
has finite energy, defined as,

E= Y fn (12.22)

n=—oo
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it is called an energy signal.
If it has a finite average power, defined as

it is called a power signal.
If the sequence is periodic with period M its average power over one period is

An impulsive signal

F&)="Y fad(t—nT)

n=—oo

829

(12.23)

(12.24)

(12.25)

such as the one shown in Fig. 12.5 and which can be an ideal sampling of a continuous-time signal,

is considered to be an energy signal if its average power defined as

)
f,

Al
byl ]y

-5T -T 0

f,

2T 3T 4T 5T t

FIGURE 12.5
Impulsive signal.

1 M

. 2

W SNIT > |l
n=—M

is zero; otherwise it is a power signal.

(12.26)

12.4 Energy Signals

Let f (¢) and g (t) be two real energy signals. We show that the Fourier transform of their cross-

correlation function 74 (t) is equal to the cross spectral density €4 (w).
We have already seen that correlation can be written as a convolution

o= [ fatn) g dr =10 xg(-0)

Trg (—t) =rgy (t).

The Fourier transform of 74 (t) is therefore given by

Ry (jw) = F (jw) G” (jw) = €74 (W)

(12.27)

(12.28)

(12.29)
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i.e. the Fourier transform of the cross-correlation function of two energy signals is equal to their
cross-energy spectral density.
We note moreover, that if the functions f (¢) and g (¢) are complex then

Tre (1) = /_00 f+7)g" (r)dr (12.30)
Rfg (jw) &F [rrg (1)) = F (jw) G™ (jw) = €54 (w) - (12.31)

Moreover
Trg (—t) =754 (1) (12.32)

12.5 Auto-Correlation of Energy Signals

The Fourier transform of the autocorrelation function rys () of an energy signal f (¢) is given by

Ryy (jw) = Flrps ()] = F (jw) F* (jw) = |F (jw)* = ef5(w) (12.33)
h ror () o |F (o) = 4 () (12.34)
erf (w) = Rys(jw) (12.35)

so that the Fourier transform of the autocorrelation function of an energy signal is equal to the
energy spectral density of the signal.

We note that the Fourier transform F (jw) of a complex function f (¢) is not in general symmetric
about origin, that is, F' (—jw) # F* (jw). The energy spectral density &ss (w)2|F (jw)|* is real
but not symmetric about the origin. Being real, however, its inverse transform is symmetric, that
is, ryp(—t) =7}, (t), as already established.

We note on the other hand that if the function f (¢) is real then F (—jw) = F”* (jw) wherefrom
the function e5s (w) = |F (jw)|> is even and its inverse transform 7y (t) is real (and even);
ryp (=) =755 (B).

Let f (t) be generally complex. Writing

resr () ER [y (0], rrpr ()2 [rsy (1) (12.36)
resr () =rppr (1) (12.37)
regr(t) = —rspi(—t) (12.38)

err (W) =/ vy (t)e < dt

— o

= / [rrrr () + jresr (t)] (coswt — jsinwt) dt

= / (res,r (t) coswt +ryp 1 () sinwt)dt (12.39)
Jo
_ L= jot
rer(t) = oo err (W) e’ dw
= %{/ efs (w)coswt dw—i—j/ ers (w)sinwt dw} (12.40)
i O -
i.e. L e
rif R (t) = . / eff (w)coswt dw (12.41)
T J—o00
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rrer(t) = %/ erf (w)sinwt dw. (12.42)
We note that
1 o0
Tf (0) = %/ Eff (w)du (12.43)

If the function f (¢) is real we have

rip(=t) =rps (), ripr(t) =0 (12.44)
grf (W) = |F (jw)|* = 2/000 res (L) coswt dt (12.45)
rer(t) = %/Oooaff (w) cos wt dw (12.46)
and
Tff (t) STff (0) =F (12.47)

E being the energy of f (¢).

Example 12.3 Show that Ry (jw) =eyy (w) for the rectangular window
fO)=lrt)=ult+T)—u(t-T).
The transform of f (t) is
F (jw) =2T Sa(Tw).
The spectral density is given by
Y 20 2
err () = |F ()2 = AT?Sa? (Tw).
The autocorrelation of f (t) is the triangle
rir(t) = (27 — |t]) o (¢) 29T Aot (t)

where, we recall, Ay (t) is a centered triangle of height unity and total base width 2x. Its Fourier
transform is

Ryf (jw)&F [rps ()] = ef5 () -

The spectral density and autocorrelation function are shown in Fig. 12.6.

&)

AT? rilt)

FIGURE 12.6
A rectangle, spectral density and autocorrelation function.
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f(ty —— h(t)

y(t)

FIGURE 12.7
Linear system with input and output.

12.6 Energy Signal Through Linear System

Let an energy signal f (t) be the input to a linear time invariant LTI system of impulse response
h(t), as shown in Fig. 12.7.
Let rs5 (t) and ryy (t) be the autocorrelation of f (¢) and of y (¢), respectively. We have

Rys (jw) = Flrys (0] = |F (jw)? (12.48)
Ryy (jw) = Fryy ()] =Y (jw)|2 . (12.49)
Now
Y (jw) = F (jw) H (jo) (12.50)
wherefrom
Ryy (jw) = |F (jw)|* |H (jo)? (12.51)
- Ry () = Ry () |H () = Ry () H (o) H* (o). (1252)
Hence
eyy (W) = e57 (W) [H (jw)[*. (12.53)
Moreover
FUH" (jw)] = h(~t) (12.54)
we have
Tyy (t) =7rps (t) x h (t) *x h (—t) (12.55)

i.e. the autocorrelation of the system response is the convolution of the input signal autocorrelation
with the convolution A (t) * h (—t).

12.7 Impulsive and Discrete-Time Energy signals

Let fs (t) be a signal formed of equidistant impulses such as the signal

fo@)= ...+ f[-1o@E+T)+ f[0]6()+ f[A]6E—-T)+... (12.56)
= Y fIn)é(t—nT) (12.57)

shown in Fig. 12.8 (a).
We may view the impulsive signal f (¢) as the result of sampling a continuous-time signal fe (t)
with a sampling interval of 7" seconds.

fs@=1fet) D 6(t—nT)= > fe(nT)d(t—nT). (12.58)

n=—oo n=—oo
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f.(6) fn]

Attt

FIGURE 12.8
Signal with equidistant impulses and discrete-time signal counterpart.

Associated with f. (¢t) and fs(t) we also have a discrete-time function, namely, the sequence
fn] = fe(nT) shown in Fig. 12.8 (b). The energy of the signal fs (t) as well as that of f [n] are

defined by the summation
oo

E= Y |flf. (12.59)

n=-—oo

If the energy is finite then the signal fs (¢t) and the sequence f[n] are energy signals. The auto-
correlation of the signal fs (¢) can be obtained by evaluating the auto-correlation rss[n] of the
corresponding sequence f[n]. In fact the auto-correlation of fs(t) is given by

= [ R )i

/ _Z fm]o(r =mT) Z 18 (¢ 4+ 7 —iT) dr
/sz §(r —mT) 6 (t +7 —iT)dr
ZZf[m]f[i]/ § (1 —mT)s(t+7 —iT)dr

Z Zf fl6—(G—m)T).

m=—00 it=—00

Letting ¢ —m =mn we have

rrg )= Y > flmlflm+n]é(t—nT). (12.60)
Interchanging the order of summations

[e') oo

rr. =Y Y fimlflm+n]d(t—nT) Z pnd (t — nT) (12.61)

Nn=-—00 Mm=—00 n=-—oo

where
> Flmlfm+n]. (12.62)

On the other hand the discrete auto-correlation of the corresponding sequence f [n] is given by

Trfn Z fIm]fn+m]. (12.63)

m=—0oQ
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1,0

NNy

3T-2T -T |0 T 2T 3T t

FIGURE 12.9

Auto-correlation of an impulsive signal.

Hence
pn=rss[n]. (12.64)
The autocorrelation 7y, ¢, (t) is represented graphically in Fig. 12.9.

The auto-correlation of the impulsive signal f (¢) is therefore a one-to-one correspondence to the
discrete auto-correlation of the corresponding discrete-time-sequence f [n]. It can be evaluated by
simply effecting a discrete auto-correlation of the discrete sequence f [n], followed by converting the
resulting sequence 7y [n] into the corresponding impulsive function, which is the auto-correlation
function 7y, s, (t) of the function fs (t). The same approach can be used for evaluating the cross-
correlation of two impulsive functions fs (¢) and gs (t).

The Fourier transform of f, (t) is given by

Fs( [Z fn]o (t —nT)

n=-—oo

:? :i (]w+] ;”) (12.65)

This is equal to the Fourier transform F' (ejQ) of the discrete-time counterpart, the sequence
f[n] with Q = wT.

Q
( ) Z f n]e = Jw ’w Q/T = = F; (]T) . (1266)
The energy density ey, r, (w) of the signal fs (¢) is given by
hup, (@) = |F (o) (12.67)

and is therefore periodic of a period 27 /7. Similarly the energy density of the sequence f [n] is
given by

O |2
err () = ‘F (eﬂ ) ’ (12.68)
and is periodic with a period 27. The autocorrelation 7y, s, (£) maybe written as the convolution:
riofe (8) = fs (0) % fs (8) = fs (8) % fs (1) (12.69)
Ry, s, (jw) = Fs (jw) F{ (jw) = [Fs (j)* = eg.1. () (12.70)
rif[nl = fln]x f[n] = fn] = f[-n] (12.71)

. . . N |2
Ry (em) =F (em) F (e_m) = ’F (em)’ =7 (). (12.72)

The transform of the energy spectral density, is therefore given by
effe (W) = Ry, . (jw) :}"[ > pad t—nt} Z pne T (12.73)

and -

ers () = Ryy (6jQ) = Z Trf [n]e_anA (12.74)

n=—oo
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Since f (t) is real we have ryy[—n] =rss[n] and ry 5, (—t) =1y 5, (1), €., p—n = pn.

efofs (W) =po+2 Z pncosnTw =rs;[0] +2 Z rss [n] cos nTw (12.75)
n=1 n—1
and -
erf(Q) =ryy [O]+2erf [n] cosn Q. (12.76)
n=1

Example 12.4 Let
fs@)=6(t—=T)+20(t—2T).

The signal is shown in Fig. 12.10 (a).

FIGURE 12.10
Impulsive signal and its autocorrelation.

Its autocorrelation is shown in Fig. 12.10 (b). The autocorrelation may be found by evaluating
the auto correlation of the corresponding sequence f[n] = dn — 1] + 26[n — 2]. We have

pn =Tff[n] = Z fln+m]fim] = 20[n + 1] + 5[n] + 26[n — 1].

The sequence f[n] and its auto correlation ry¢[n] = pn are shown in Fig. 12.11.

fln] Pa

(a) (b)

FIGURE 12.11
A sequence and its autocorrelation.

Ty, () =55(t)+20(t+T)+25(t—T)
€fafs (W) = Ry, (Jw) =5+ 27T 4 27997 — 5 4 4cosTw.
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Alternatively, we have
Fy (jw) = e 7" 4 2e779" = (cos wT + 2cos 2wT) — j (sinwT + 2sin 2wT)

er.s (@) = |Fs (jw)|*.
Similarly epy () = Ryy (e’) =5+ 4cos Q.
Example 12.5 Let

oy = [t/10, 0<t<30
W= 6—1t/10, 30 < t < 60.

Evaluate the sampled function fs(t), the discrete-time function f[n] and their auto-correlations,
assuming a sampling interval of T = 10 sec. ~We have

Jo(t) =6 (t = T) + 26 (t — 2T) + 36 (t — 3T) + 26 (t — AT) + 6 (t — 5T)

n, 0<n<3
6—m,3<n<6

Fn = fo (nT) = f. (10n) = {

pn=rfrn] =0[n+4]+45[n+3]+105[n+2] + 166 [n +1]
+196[n]+160n—1]+106[n —2] +46[n— 3]+ d[n —4].

The sequence f[n] and its autocorrelation p[n] = rys[n] are shown in Fig. 12.12 (a) and (b),
respectively.
fln] rn]
204
34
2T 10
T
. . | [,
01 2 3 4 5 6 n 4 -3 2 1 101 2 3 4 n

FIGURE 12.12
Sequence f[n] and its autocorrelation.

The corresponding impulsive auto-correlation function ry_ s, (t) is deduced thereof to be

rropa () = 6 (t+4T) + 46 (t + 3T) + 106 (t + 2T') + 166 (t + T)
+195 (t) + 168 (£ — T) + 108 (t — 2T") + 48 (t — 3T) + 6 (t — 4T)

f.fs (W) = Ry.p. (Jw)
19+ 32cos Tw + 20 cos 2Tw + 8 cos 3T w + 2 cos4Tw
= 19 4 32 cos 10w + 20 cos 20w + 8 cos 30w + 2 cos 40w

erf () = Rys (em) = 19 4 32 cos 2 4 20 cos 2Q2 + 8 cos 32 + 2 cos 4€).

The energy spectral density 55(Q) of the sequence f [n] is shown in Fig. 12.13.
Alternatively,

F, (jw) = oI T + 9e 92T + 393« T + 9~ 4w T + o I5wT
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&,(Q)

80

- n Q

FIGURE 12.13
Energy spectral density.

efofe (W) = |Fs (jw)|* = Fs (jw) FS (jw) -

Letting
JjwT * —jwT -1
z=e"", 2" =e =z .

We have, with z = %,

erfs (W) = (zfl +2:7% 43270 4227 + 275)
(z + 222 + 325 + 2% + z5)
=194 162" +1027° + 427 + 27" 4162 + 102% + 42° + 2*
=19 4 32 coswT + 20 cos 2wT + 8 cos 3wT + 2 cos 4wT = Ry, ¢, (jw)
erf () =19+ 32cosQ + 20cos 2Q2 + 8cos 302 + 2cos 4Q = Ry (ejQ) .

12.8 Powers Signals

We have seen that a power signal has a finite average power

0 < f2(t) < oo, (12.77)
where
72 L[ 2
f2) = hm — |f (@®)|dt (12.78)
2T J_1
and that a periodic signal is a power signal having an average power evaluated over one period
- 1 [T/2 ) o )
P=F=7 [ Ir@fa= 3 IR (12.79)
T -T/2 n=-—oo

In the following the cross and auto-correlation of such signals are defined.

12.9 Cross-Correlation

Let f (t) and g (t) be two real power signals. The cross-correlation ryg (t) is given by

rr (1) = Jim o / [ (t+7)g () dr (12.80)
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rig (=t) =795 (t) (12.81)
as is the case for energy signals. If f () and g (t) are complex then
Trg (t) = Tlgnooﬁ / f+7)g" (1)dr (12.82)
rig (=) =715 () (12.83)
= lim — 12.84
rys(t Tgnoo2T/ F@fE+r)dr (12.84)
i (=t) =755 (1) (12.85)
and
1T =
s O) = Jim o= [ £ @O Pat =T (). (12.86)

12.9.1 Power Spectral Density

For a real power signal f (¢) the power spectral density denoted by Sys (w) is by definition the
Fourier transform of the autocorrelation function.

Sty (W) = Flryr ()] = Ryp(jw). (12.87)

Since rys (t) is real and even its transform Sys (w) is real and even. We have

Str(w) :2/000 rf (t) coswt dt (12.88)
and 1 oo
rir(t) = p /0 Str(w)coswt dw. (12.89)
Let
Fr(t) = £ (O Tlr (t) = £ (t) {u (t + ) — u(t— T)} (12.90)
that is, fr (¢) is a truncation of f ().
We have -
Fr(jw) = Ffr (1) = /7 Fean (12.91)

The average power density over the interval (=7, T') is the energy over the interval divided by the
duration 27. Denoting it by St (w) we have

St (w) g% \Fr ()2 (12.92)

It can be shown that Sy (w) is the limit as T tends to infinity of St (w)

o T . N2

Spp(w) = Jim St (w) = lim o [Fr (jo)|- (12.93)

In fact
Sff(UJ):f[rff(t)]:f{llmooﬁ/ fr@+71)fr(r)dr
_ - Jwt
ThjnooQT/ / fT t+T)fT( )dTe dt

— i —jwt

— Tlgnoo 5T / fr(r / frt+7) dt dr. (12.94)
Let

t+17==x (12.95)
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Sip(w) = lim — / ! e [ @) e Vg dr

T—o0 2T T oo
1 (T _
. JwT
= Tlimoo—2 fr (1)’ Fr (jw) dr

1 NP
= Tlgréoﬁ |Fr (jw)|” = TlgnooST (w). (12.96)

12.10 Power Spectrum Conversion of a Linear System

Let f (t) be a power signal applied to the input of a linear time invariant LTI system the impulse
response of which A (t) is an energy signal. The system response may be written

y(t) = / f(r)h(t —T)dr (12.97)

Let r¢s (t) and Sy (w) be the autocorrelation and spectral density respectively of the input f (¢).
The autocorrelation of the output signal y (¢) is given by

.
o (0) = Jim 5 [yt yar

s . (12.98)
= Tlgnooﬁ /7Th(u)f(7—fu)du/iooh(x)f(t+7—f:v)d:v dt.
Interchanging the order of integration
= 1 e — —
Tyy (1) Tgnoo2T/ h(u / h(z / fr—uw)f(t+7—2z)dr de du
— Tll—r»nooﬁ _Ooh(u) _ooh(x)/T uf( a)f(a+u+t—x)dr dx du
= / h (u) / h(z)ryr (u+t—z)dx du. (12.99)
We note that the second integral is a convolution. Writing
z(u+t)=/ h(z)res(u+t—x)de =h(t) *«rre(u+t) (12.100)
ie.
2(t) = h(t)xrss(t) (12.101)
we have
Tyy (¢ / h(u)z (u+t)du=7r.(t) = 2(t) x h(=t) =755 (t) x h (t) x h (—t). (12.102)

We conclude that the system response y (t) is a power signal the autocorrelation ry, (t) of which is
the convolution of the input signal autocorrelation rs; (t) with the function h (¢) * h (—t) that is,
the convolution of h (t) with is reflection. Moreover,

Syy (W) = Flryy (1)) = Flrss (0] - H (jw) H (jw) = Sy (w) [H (o). (12.103)



840 Signals, Systems, Transforms and Digital Signal Processing with MATLAB

We conclude that the time domain convolution y(t) = f(¢) * h(t) leads to the power spectral

density transformation
Syy (W) = Sy (W) |H (jw)I” (12.104)

and that more generally, the convolution y(¢) = f(¢) * z(¢t) of a power signal f(t) and an energy
signal z(t) leads to the power spectral density transformation

Syy (W) = Sgy (W) X (jw)|* . (12.105)
In the case of input white noise for example
Spr(w) =1 (12.106)

wherefrom 74 (t) = 8 (t) and Sy, (W) = |H (jw)|*, i.e. the power density of the system response
is equal to the energy density of the impulse response h (t).

Example 12.6 Let f(t) = K, where K is a constant. The autocorrelation of f (t) given by
D S A 2
rer(t) = Tlgnooﬁ ./_TK dt =K
is a constant, and
Sip(w) = Flris ()] = Rezjw = 2 K6 (w)
as shown in Fig. 12.14.

o) ri(t) Si(w)

FIGURE 12.14
A constant, autocorrelation and power spectral density.

The power by direct evaluation is P = K? and, alternatively,
— 1 [ 9
P=f2(t)=— Spp(w)dw = K°.
2m J_ o

Note that functions that are absolutely integrable such e ‘u (t) have finite energy and thus
represent energy signals whereas functions such as the step function and unity represent power
signals.

Example 12.7 FEvaluate the autocorrelation and spectral density of the signal
F() = Ku(t).

The signal is shown in Fig. 12.15(a).

K2 (T
rir(t) = Tlgnooﬁ /Tu(r)u(t +7)dr.
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f(t) ry(0)
K/2

K

Siw)

(a) (b)

FIGURE 12.15
Unit step function, autocorrelation and power spectral density.

Consider the integral

and the case t > 0. We have

and

For t <0 we can use the symmetry property

rrp(—t) =rpp(t) = K?/2
wherefrom
Tff (t) = f('2/27 Vit

and
Str(w) = Ryp(jw) = mK*5 (w).

The autocorrelation and spectral density are shown in Fig. 12.15(b) and (c), respectively.

841

12.11 Impulsive and Discrete-Time Power Signals
Let f (t) be the impulsive function
=3 finlst—nT).
If the average power of f (t) is finite and not zero, that is,
;N
. 2
O<A}1m — Z [fn]]” < o0

n=—N

(12.107)

(12.108)

then f(¢) is a power signal. As noted earlier f,(¢) may be the result of ideal sampling of a

continuous-time function f. (¢)

fs@)= Y fe(nT)é(t—nT).

n=—oo

(12.109)
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The discrete-time representation of the same signal is the sequence f [n] defined by f[n] = f. (nT).
The autocorrelation of fs (t) is given by

s (1) = Thmooﬁ / fs (7) fs (t+7)dr (12.110)
As in the case of impulsive and discrete-time energy signals it can be shown that
rrg. ()= Y pad(t—nT) (12.111)
where
M-1
po= I ongg 2 Slld bl (12.112)
The power density is given by
Stop. (W) = Flrs.p, ()] 2Ry, (jw) { > pad (t—nT)
oo . oo
= Z pneﬂnT“’ =po+2 Z pn cosnTw. (12.113)
n=-—oo n=1

For the sequence f [n] the autocorrelation is given by

M-1
rylnl = Jim o S0 fmlf [n+m] (12.114)
m——IVI

so that L

pn = s 0] (12.115)
Spr (@) = Flrysnll = Ryp(e?) = > rypnle™
=77 [0] +2irff [n] cos Q n. (12.116)
n=1
|

12.12 Periodic Signals

Let a real signal f (¢) be periodic of period T Its autocorrelation r¢¢ (t) is periodic defined by

T oo
rff(t):%/o FO)f(t+7)d :_/ oDy Fe/mott+7) g7

1 . . e _ .
== Z Fpe?™o / f(r)emoTdr = > F,e/"°'Fy, (12.117)
i.e.
oo
rip(t) = Y |Fal?e™, wo=2m/T (12.118)

n=—oo
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which has the form of a Fourier series expansion having as coefficients |F,|?. We can therefore
write

1 .
|Fnl? = f/rff (t)e 70t dt (12.119)
T
ref(t) = Z | F|? cos nwo t (12.120)
rip(t) = |Fo|> 4+ 2 Z | F|® cos . wot. (12.121)
n=1
The power spectral density is given by
Spr(w) = Ryy (jw) =21 Y |Ful?6 (w — nuwo) . (12.122)
The average power of f (t) is given by
1 e . 1 e
P=jf2(t)=r; (0) = — / Rys (jw)dw = — / Str (w)dw. (12.123)
2m J_ oo 2m J_ oo
Moreover,
L[ o - 2
P== t)dt = F.|”. 12.124
r ) roa= 3 m (12.124)

Example 12.8 FEwvaluate the power, the spectral density and autocorrelation function of the signal
f(t) = Acoswot where wo =2n/T. We have

1T, A2 1 [T i
P=— A” cos“wot dt = — X = (cos2wot + 1)dt = A”/2.
T/, T "2/,

The evaluation of the average power of a sinusoid is often needed. It is worth while remembering
that the average power of a sinusoid of amplitude A is simply A? /2.
We also note that the Fourier series coefficients of the expansion

fO)= 3 e

n=—oo

are given by

o AJ2,n=+1
710, otherwise

wherefrom
P=f2(t)=) |F|>=2x A%/4=A%)2

Spr(w) = 271'2 |Fn|?6 (w — nwo) = 71'% {6 (w—wo)+d(w+wo)}

1 [ nA?
%{5(w7w0)+5(w+w0)}dw:A2/2

=5/
oo

rip(t) = |Fo|” + QZ |F|? cosn wot = (A®/2) cos wot.
1

We note, moreover, that

2

Ryy () = T2 {8 (& — wo) + 6 (w +w0)} = Sy (&),



844 Signals, Systems, Transforms and Digital Signal Processing with MATLAB

12.12.1 Response of an LTI System to a Sinusoidal Input

let z(t) = sin(Bt + 6) be the input to an LTI system. We evaluate the power spectral density at
the input and output of the system.
The power spectral density of the input is

Saz (W) =27 Z | X)%6 (w — nwo) . (12.125)
where wo = 3. The power spectral density of the output is
Syy () =21 Y |Ya|?0 (w—nwo) == 21 Y |Xn|’[H(jnB)|*5 (w—np). (12.126)

The average power of the input z(t) is

P=a2(t)= Y |X.]>=4%2 (12.127)
and that of the output is
P=y ()= > [|Yal*=(A*/2)|H(jnB)* (12.128)

Example 12.9 The signal z(t) = Asin(Bt), with A =1 and 8 = m, is applied to the input of an
LTI system of impulse response h(t) = Ilo.s5(t). Is the system response y(t) an energy or power
signal? Evaluate the energy and power, and the spectral density at the system input and output.
The input signal x(t) and response y(t) have infinite energy and are hence power signals. since
their energy is infinite. The spectral densities are

Sz(w) = (7/2)[0(w — 7) + 6(w + 7)]

Sy(w) = Se(W)|H(jw)|* = gSaQ(ﬂ'/Q)[&(w —7m)+ 0w+ )] =0.637[0(w — ) + §(w + 7)]
The input power is
1 [
— 22 (1) — — -
P, =z%(t) = oy /oo Se(w)dw = 0.5
The output power is

1
— —0.2
27r/ Sy(w)dw = 0.203

Py:y2(t):

Alternatively, note that the input sinusoid Amplitude is A = 1 and its power is Py = z2(t) =
A%/2 = 0.5. The output is y(t) = A|H(jm)|sin(Bt +arg[H (jr)]) = Bsin(nt+0), where B = 0.6366

and 0 = —m/2, and its power is Py, = y2 (t) = B*/2 = 0.203.

12.13 Power Spectral Density of an Impulse Train

Consider the impulse train shown in Fig. 12.16(a).

z(t)=pr ()2 i 5§t —nT). (12.129)

n=—oo
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x(®) rt) S(w)
1 1/T

EEREEEEREN H H

2r -1 LT oT ¢t 2T -T T 2T t 20, -0, ®, 20,
(a) (b)

FIGURE 12.16
Impulse train, autocorrelation and power spectral density.

To evaluate the power spectral density of the impulse train we may proceed by applying the
correlation definition directly over one period.
1 [T 1
Tze (1) = —/ (MY (t+71)dr==0(), -T/2<t<T/2 (12.130)
T ) 1) T

that is, rz¢ (¢) is an impulse train of period 7' and impulses of intensity 1/7

1
Taa ( TZ& (t =nT) = Zpr (1) (12.131)

The power spectral density with wo = 27/T is given by

. 1 M =
Sea (W) = Rag (jw) = mwopuy (0) = 73 Z_ 8 (w — nwo) . (12.132)
Alternatively, X,, = 1/T and
Sez (W) =27 Z |X)%6 (w — nwo) = Z 0 (w — nwo) (12.133)

Example 12.10 Let v (t) be the periodic ramp shown in Fig. 12.18. FEvaluate the power spectral
density. We have found in Chapter 2 that the fourier series coefficients are

v(t)

-2 -1 0 1 2 t
FIGURE 12.17
Periodic ramp.
v — AJ2, n=20
= JA/(2n), n £ 0
where A=1 and wo = 2w. Hence
Sy (w) = 27 Z_ [Val? 8 (w — nwo) = (1A*/2) 6 2 2 — nwo)

n#()
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oo o0 1
Too (1) = VE+2 Z |Vn|2 cosnwot = 1/4 + Z (W) cos nwot.
n=1

n=1
A direct evaluation of the periodic autocorrelation of the periodic ramp v(t) by the usual shift-
multiply-integrate process as shown in Fig. 77 we obtain

v
1
T t-1
-2 -1 0 1 2 T
v(t+1)
A |
! |
A the LA A
Vi t+-17 1 P
’ ’ ] 4 ]
,I ’I [} ] ,I ]
-2 -t ol -t+1 1 T

FIGURE 12.18
Periodic ramp and its shifting in time.

1-t 1
mv(t):/O (t+T)TdT+/ t+r-1)7dr, 0<t<1

1-t

=(1/6) (2-3t+3t*), 0<t<l.

A Fourier series expansion of Tvy(t) as a verification produces the trigonometric coefficients

1
omenz =1

1
an = 2/ (1/6) (2 — 3t + 3t°) cosn2rt dt =
0

and ao = 1/2 as expected. The functions Svy (W) and Ty (t) are shown in Fig. 12.19 and Fig.
12.20, respectively.

Soe)
| TA%/2
N T T
20, -0, ®, 20, o

FIGURE 12.19
Power spectral density.
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-2 -1 0 1 2

FIGURE 12.20
Autocorrelation of a periodic function.

Example 12.11 Let
v (t) = Acos (mwot + 0), m integer

where wo = 27 /T. Evaluate Sy (w) and vy (t).
We have ,
V. — (A/2) e, n=+m
" 0, otherwise

S (W)

27T{|Vrn|2 d (w —muwo) + |Vlm|2 0 (w+ mwo)}

= 7T2A {6 (w — mwo) + 6 (w + mwo) }

Tuo (t) = 2 {(A®/4) cosmwot } = (A®/2) cos mwot.

12.14 Average, Energy and Power of a Sequence
As noted in Chapter 1 the average value of a sequence z[n] is
M

alnl = lim oy 2 el

n=—M

(12.134)

A real sequence x[n] is an energy sequence if it has a finite energy which can be defined as

E= Z x [n)°.

n=-—o0
A real aperiodic sequence z[n] is a power sequence if it has a finite average power
M

. 1 2
P=aff? = lm s >, oMl

n=—M

If the sequence is periodic of period N its average power would be

z

L
N
n

P =zn]? = z [n)?.

(12.135)

(12.136)

(12.137)
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Example 12.12 Let the sequence z[n] = 37" u[n]. Evaluate its energy.

[eS) o oo Y 1 9
E:E 32u[n]:E 9 u[n]=179_1=§4
n=0 n=0

Example 12.13 FEvaluate the power of the signal
x [n] = 10 cos (7n/8) .
The period N is deduced from
z[n+ N] =z n]
10 cos (mn/8) = 10cos [r (n + N) /8] = 10 cos (7n/8 + wN/8)

N is the least value satisfying
(m/8) N =2m, 4w, 6w, ...

N =16
1 = 100 O
5_ 1 2 _ 2
P = 6 {100 nE:O cos (7m/8)} 6 2;:0 cos” (mn/8)
2
= 75 (140.8536 + 0.5 4 0.1464 4+ 0 4 0.1464 4+ 0.5 + 0.8536) = 50.
——

12.15 Energy Spectral Density of a Sequence
The energy of a sequence z [n]is given by

oo

E= Y e[

n=—oo

The energy spectral density is given by £, (2) = ‘X (ejﬂ) ‘2.
Pareseval’s Relation states that

i |z [n]|> = %/:: ’X (em)rdﬂ = %[ia(ﬂ)dﬂ

n=—oo

12.16 Autocorrelation of an Energy Sequence
The autocorrelation of a real energy sequence is given by

Tez [N] = Z z[n+m]z[m] =zn]*xx[—n].

n=-—oo

Its Fourier transform is

Rea (ej“> =X (d“) X (d“) - ’X (d“)
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12.17 Power density of a Sequence

The power of a sequence is given by

P=ga%[n] = lim oo > el

The autocorrelation of a power sequence z [n] is given by

N
_ 1
rez[n] = Jim ox kz z[n+ Kz [k]

=—N

The power spectral density is given by
80 (Q) = F [ras [n]] = Ras ()

Parseval’s relation takes the form

N 0o
—_— 1 , 1
— 22l = -
P=2z2[n] = 1\;1m SN 1 n:E_N|x[n]| =5 /7 Sz (£2)dQ

12.18 Passage through a Linear System

Let x [n] be the input and y [n] the output of a linear time-invariant discrete-time system.
If z [n] is an energy sequence its energy spectral density is 5 () = ‘X (ejﬂ) ‘2 and that of the

output is
ey @ = v ()] =[x ()] | ()]

If x [n] is a [power sequence its energy spectral density is S, (€2) and that of the output is

S, (Q) = S. () ‘H(em>’2.

12.19 Problems

Problem 12.1 A system has the impulse response
h(t) =sinwtlly (t) =sinwt {u (t) —u(t —-T)}.

The system receives the ideal impulse Train pr (t) as input

oo
z(t)=pr(t)= > o(t—nT).
n=—oo

a) Evaluate the output y (t) of the system if

i) T =11 sec,

i) T =12 sec.

Evaluate its Fourier Transform'Y (jw) and its Fourier series expansion with analysis interval T .
b) With T =12 sec evaluate the energy and power spectral densities of h (t) and y (t). Write the
expressions describing the auto-correlation of h (t) and y (t) in terms of their spectral densities.
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Problem 12.2 A signal f (t) has a Fourier Transform
F (jw) = 1476 (w) + j6m6 (w — 27 x 10°) — 5676 (w + 27 x 10°)
+ 276 (w — 81 X 103) + 278 (w + 87 x 103) .

a) Is the signal f (t) an energy or power signal?

b) Fvaluate the spectral density of f (t).

¢) What is the average power of f (t)?

d) What is the energy of the signal over an interval of 1073 sec?

e) The signal f (t) is filtered by an ideal bandpass filter with a pass-band 10007 < |w| < 60007 r/s
and gain K. Evaluate the filter output g (t). What is the average power of g (t)?

Problem 12.3 Let
z(t)=f(@1)+g(t)
where
f () = Aisin (wit + 61)
g (t) = Az sin (wat + 62)
where wa > w1.
a) FEvaluate Sy (w) the power spectral density of x (t).

b) What is the average power of the component of = (t) of frequency w2? A signal y (t) is generated
as

y(t)=f(t)g(t).
¢) Ewvaluate the power spectral density Sy (w).
d) The signal y (t) is fed to a filter of frequency response

H (jw) = K 1., (w) .
Evaluate the power spectral density at the filter output z (t).

Problem 12.4 a) Ewvaluate the function f (t) that is the inverse Laplace transform of the function

F(s) = {176*(””}/(5“).

b) Ewaluate the autocorrelation ryy (t) of the function f (t) and its Fourier transform Ryy (jw).
¢) Can the Fourier transform F (jw) of f (t) be evaluated from F (s) by letting s = jw? Justify
your answer.

d) Evaluate |F (jw)|* and compare it with Rys (jw). e) Is f(t) a power or energy signal ?
Evaluate the energy or power spectral density of f (t). Evaluate the energy / power of f(t).
f) Let H(s) = F(s) be the transfer function of a linear system. Let the input to the system be

the signal

z(t)= Y d(t—n).

Evaluate the power spectral density of the system response y (t). Evaluate the average power of y (t)
in the frequency band 0 < f < 1.5 Hz.

Problem 12.5 Consider a signal x (t) of which the auto correlation function is given by

Tzx (t) = 6_‘”7 —o0 < t < oo.

a) Evaluate g4, (w) the energy spectral density of x (t).
b) Fvaluate the total energy of x (t).
¢) The signal x (t) is fed as the input of a filter of frequency response

A2<|wl <4
0, otherwise.

(o) = {

Evaluate the total energy of the signal y (t) at the filter output.
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x(t) G(s) + y(t)

Problem 12.6

FIGURE 12.21
System block diagram.

In the system shown in Fig. 12.21 the transfer function G (s) is that of a causal system and is
given by
G (s) = 1007 /(s + 100m).
a) Evaluate the system impulse response between the input x (t) and the output y (t)
b) Given that the input is
z (t) = 1+ cos 1207t

evaluate the average mormalized power of the output y (t). Evaluate the power spectral density of
y(t).

Problem 12.7 Consider the signals

z(t)= > {u(t—2n)—u(t—1-2n)}

n=—oo

y(t)=e"u(t)
which represent voltage potentials in Volt as functions of time t in seconds.
a) For each of the two signals evaluate the total normalized energy and the average normalized
power.
b) The signals z (t) and v (t) are given by z(t) =z (t) y(t) and v (t) =z (t) *y (t). For each of
these signals state whether the signal is an energy or power signal, explaining why.

Problem 12.8 The frequency transformation
s—(s*+1)/s

is applied to a second order lowpass Butterworth filter prototype.

a) Write down the transfer functions Hrp (s) and Hpp (s) of the lowpass and bandpass filters.
b) Ewaluate the central frequency wo and the low and high edge frequencies wr and wy of the
bandpass filter.

¢) Re-write the values of Hrp (s) and Hpp (s) so that the filter mazimal gain be 14 dB. Let the
input to this bandpass filter be x (t) = 10+ 7sinwot. Evaluate the average normalized power of the
output y (t).

Problem 12.9 For each of the following signals, which are expressed in Volt as function of time
in seconds, state whether it is an energy or power signal and evaluate its total normalized energy
or average normalized power.

a)
v (t) = 3sin [10007 (¢t + 0.0025)] + 2 cos (15007t 4+ 7/5) .

_f025(t—2),2<t<6
b) w(t)= {O7 otherwise.
c)
10

z(t) =Y w(t—10n).
g
y(t) = Z w(t—5n).

n=—oo
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Problem 12.10 Let x (t) be a function, X (jw) its Fourier transform and

X () = 1/V1+w? +7/2{8 (w = B) + 6 (w + H)}.
a) What is the average value of x (t)?

b) Is z(t) periodic? If yes what is its period? If not why?
c) The signal x (t) is applied as the input to a filter of frequency response H (jw), where

|H (jw)| =12 (w), arg[H (jw)] = —7w/ (45).
Sketch the amplitude spectrum |Y (jw)| of the filter output y (t).

d) Let z(t) = x(t)+ 0.5sin(2.56t) 4+ 0.5. Sketch the amplitude spectrum |Z (jw)| of the signal
z (t).

Problem 12.11 For each of the following signals evaluate the signal total energy and the average
normalized power and deduce whether it is an energy or power signal:

a) v (t) = Asin (20007 + 7/3) .

b) w(t) = Asin (20007 + 7/3) Ro.001 (t), where

Ro.001 (t) = u (t) —u (t —0.001).

(oo}

c) z(t)= Z e P Ly (t—Bn) —u(t—5—5n)}.

n=—oo

d) z(t)=A

Problem 12.12 A system of transfer function

s+1

s — s/we

recetves an input x (t) and produces an output y (t). Assuming x (t) = Acoswot, where A =5
Volt and wo = 27 fo = 2w x 500 Hz.

a) With K =1 and wc= 5007 r/s, evaluate the average power of the signal y (t).

b) With K =1 find the value of we so that the average power of y (t) be 5 Watt.

¢) With w. = 10007 r/s evaluate K so that the average power of y (t) be 5 Wait.

Problem 12.13 Given the signals v (t) =z (t)y (t) and f(t) = (t)* 2z (t), where
z(t) =5Rs(t) =5[u(t) —u(t—3)]

y(t) =2IDo5 (t) = 2[u(t + 0.5) — u (t — 0.5)]
z(t) =1+ cos(mt+7/3).
a) Ewvaluate V (jw) and F (jw), the Fourier transforms of v (t) and f (t) as well as the Fourier
series coefficients Fp, of f (t).

b) State whether each of the signals v (t) and f (t) is an energy or power signal, evaluating the
energy or power spectral density, the total energy or the average mormalized power in each case.

Problem 12.14 A signal f (t) of average value f(t) = 15 is applied to the input of a linear
system of impulse response
h(t) =5e” " sinbrt u (t).

What is the average value y (t) of the system output y (t)?

Problem 12.15 A signal x (t) has a Fourier transform

X (jw) = 27 Sa (w/400) ¢ ~7«/*0 Z § (w —1007n) .

n=—oo
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The signal is applied to the input of a filter of frequency response H (jw) and output y (t), where

1= ](w—3007) / (2007)]*, 1007 < |w| < 5007
[H (jw)| = { 0, otherwise

arg [H (jw)] = {;/’;/ Be-t

a) FEvaluate the exponential Fourier series coefficients Xn of x (t) with an analysis interval of 0.02
sec.

b) Sketch the frequency response |H (jw)|.

¢) FEvaluate the Fourier series coefficients Yy of the output y (t) over the same analysis period.

d) Ewvaluate the output y (t) and the normalized average power of each components of y (t).

Problem 12.16 A system receives an input x (t) and produces an output y (t) that is the sum of
x(t) and o delayed version x (t —7) where T = 0.4 x 1073 sec. The signal = (t) is a sinusoid of
amplitude 5 Volt and frequency 1 kHz.

a) Draw the block diagram describing the system.

b) Ewvaluate the impulse response h(t) and frequency response H (jw) of the system between its
input = (t) and output y (t).

¢) FEvaluate and sketch the power spectral density S (w) of the signal x (t), expressed in terms of
the Fourier series coefficients X, of x (t).

d) Ewvaluate and sketch the power spectral density Sy (w) and the average poweryg—(t) of the output

y(t).

Problem 12.17 The signal x(t) = e”"u(t) is applied to the input of a filter of frequency
response H (jw) given by
oy 5,11< |w| <3
H (jw) = {0, otherwise

Evaluate the energy spectral density e, (w) of x (t) and e, (w) of y (¢).

Problem 12.18 A filter of frequency response
H (jw) = (1 - wQ/WQ) Iy (w)

receives an input v (t) and produces an output y (t).

Assuming that the input v (t) has an autocorrelation 1., (t) = cos (Wt/4) evaluate the power
spectral densities Syy (W) and Syy (w) of the signals v (t) and y (t), respectively. Evaluate the nor-
malized average power of y (t).

Problem 12.19 Consider the signal
v (t) = 10sin BtIly/s (t)

where 8 =4x/T.

a) Sketch the signal v (t). Ewvaluate its energy and normalized average power and corresponding
spectral density if any.

b) What is the result of integrating the evaluated spectral density?

Problem 12.20 A signal is given by
v(t) = 10cos[B(t — 1)] + 5sin [46(t — 2)] + 8 cos[108(t — 3)]

where 3 =2nw/T and T =1 sec.

a) Fuvaluate the exponential Fourier series coefficients of v(t) with an analysis interval of one
second.

b) FEvaluate the signal power spectrum.
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TABLE 12.1
Amplitude and phase spectra.
Frequency kHz | 0 | 10 20 30 40 | =50
|, | Volt 2125 35 2 1 0
arg[F,] deg. [0|—-10]—-20[—-30| —-40| —

Problem 12.21 A spectrum analyzer displays the amplitude spectrum in Volt and phase spectrum
in degrees as the Fourier series coefficients Fy, versus the frequency in Hz of a function f(t) as
shown in Table 12.1 and with F_, = F};.

a) What is the period T and the average value of the function f(t)?

b) Write the value of the function f(t) as a sum of real expressions.

¢) The signal f(t) is fed to a filter of frequency response H (jw) where

|H (jw)| = Mg (w)

where B = 500007 rad/sec, arg[H(jw)] = —(107%/180)w rad/sec and the filter output g(t) is
modulated by the carrier cos(400007t) producing an output y(t). Sketch the Fourier transforms
G(jw) and Y (jw) of g(t) and y(t).

d) What is the average power of the output signal y(t)?

Problem 12.22 Consider the signal:
v(t) =u(t+to) —u(t — b+ to)

where b >ty > 0.

a) FEvaluate the autocorrelation v, (t) of v(t).

b) Ewaluate the Fourier transform Ry, (jw) of Tvu(t).

¢) FEvaluate the Fourier transform V (jw), the energy spectral density and deduce therefrom the
total energy of v(t). Compare the result with Ryy(jw).

Problem 12.23 FEwaluate the energy spectral density for each of the following signals:
a) x(t)=¢e" u(t)—u(t-1)].
b) y()=e fsin(t)u(t).

Problem 12.24 Given the signal v (t) = e ‘u (t)
a) evaluate the energy of the signal v (t),
b) evaluate the energy of the signal contained in the frequency range 0 to 1 Hz.

Problem 12.25 Given the signal v (t) = e ‘u (t).

a) Show that v(t) is an energy signal.

b) FEvaluate the energy spectral density of v(t).

¢) Ewvaluate the normalized energy contained in the frequency range 0 to 1 r/s.
d) Ewvaluate the normalized energy contained in the frequency range 0 to 1 Hz.
e) Fuvaluate the auto-correlation function rvy (t) of v(t).

f) Show how from 1y, (t) you can deduce the energy spectral density of v(t).

Problem 12.26 The signal v (t) = de ' (t) is applied to the input of a filter of frequency
response H (jw).

a) What is the total normalized energy E, of v(t)?

b) What is the total normalized energy Ey of the signal y(t) at the filter output in the case where
the filter is an ideal lowpass filter of unit gain and cut-off frequency 2 r/s?

c) What is the total normalized energy Ey of the signal y(t) at the filter output in the case where
the filter is an ideal bandpass filter of unit gain and pass band extending from 1 to 2 Hz?

d) What is the total normalized energy E, of the signal y(t) at the filter output in the case where
the filter transfer function is H (s) =1/(s+2)?

e) What is the total normalized energy Ey of the signal y(t) at the filter output in the case where
the filter frequency response is H (jw) = e™9“T, where T is a constant?
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Problem 12.27 FEach of the following signals is given in Volt as a function of the time t in seconds.
For each signal evaluate the total energy if it is an energy signal or the average power if it is a
power signal.

a) zq(t) =3[u(t—Ta) —u(t—6T,)], where T, > 0.

b) () = xa (t) cos (2mt/Ty), where Tp = Ty.

c) z.(t) = Z xp (t — nT.), where T, = 15T.

n=-—oo

d) z4(t)=za(t)+1.
Problem 12.28 Consider the three signals x(t), y(t) and z(t):
z(t)=u®t)—u(t—1), y(t)=u({t+0.5)—u(t—0.5), z(t)=sin(nt).

a) Is the sum v (t) = z(t) + y(t) an energy or power signal? Depending on the signal type,
evaluate the total normalised energy or the average normalized power, respectively.

b) Is the convolution s(t) =z (t)*z(t) an energy or power signal? Depending on the signal type,
evaluate the energy spectral density or the power spectral density, respectively.

Problem 12.29 Fualuate the power spectral density and the average power of the following periodic

signals:

a) v (t) = 5cos (20007t) + 3sin (5007t) .

b) x(t) =[1+ sin (1007¢)] cos (20007t) .

¢) y(t) = 4sin® (2007t) cos (20007t) .
(t)

= Z 10* (t— 10_3n) {u(t=10"°n) —u(t—=10"%[n+1])}.

n=—oo

d) z(t

Problem 12.30 Let x(t) be a periodic signal having a period 5 x 1072 seconds. Its exponential
Fourier series expansion with an analysis interval equal to its period has the Fourier series coeffi-
cient

1, n=0, =4
Xp =4 +j,n=+1
0, otherwise.
Let y(t), be a signal having the Fourier transform Y (jw) = 150/ (125 + jw).
a) Let z(t) be the convolution z(t) = x (t)*y(t). Evaluate the average power z2(t) of z(t).
b) Let v(t) =z (t)+y(t). Evaluate the average power v2(t) of v(t).

Problem 12.31 Let z(t) = 3cos (wit) + 4sin (wat), where w1 = 120r and w2 = 180w. The
signal x(t) is applied to the input of a filter of transfer function H(s) =1/ (14 120m/s).

Evaluate the power spectra density Sy (w) of the the signal y(t) at the filter output. Evaluate the
average power y2(t) of y(t).

Problem 12.32 A filter which has a transfer function H (s) = K/ (1+ s/wc) receives an input
signal x (t) = Acos (27 fot), where A =5 Volt and fo = 500 Hz, and produces an output signal
y(t).

a) Let K =1 and we= 5007 r/s. Evaluate the average signal power at the filter output.

b) Let K = 1. Determine the value of w. so that the average power of the output signal y(t) be
5 Watt.

¢) Let w. = 10007 r/s. Determine the value of K so that the average power of the output signal
y(t) be 5 Wait.

Problem 12.33 The periodic signal v (t) = Z (—=1)" Ara (t —nT/2) is applied to the input
n=—oo

of filter of frequency response H (jw) = 4A12 (w) and output y(t). Evaluate

a) the average power of the signal v(t),

b) the average power of y(t) if T = 2m/3,

¢) the average power of y(t) if T = /6.
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Problem 12.34 A wvoltage vg (t) is applied to the input of a first order lowpass RC filter with
RC =1, of which the output is vs (t). For each of the following cases evaluate the average power
of the input and output signal vg (t) and vs (t), respectively.

a) The power spectral density of ve (t) is Svy (W) = A[d(w+1) + 0 (w —1)].

b) The power spectral density of vg (t) is Svgp (W) =u(w+1) —u(w—1).

¢) The power spectral density of vg (t) is Sy (w) = A.

Problem 12.35 The signal x (t) = sin (47t) s applied to the input of a filter of transfer function
H(s)=1/(s+1) and output y (t).

a) FEvaluate the power spectral density Sz (w) of the signal x (t).

b) FEvaluate the average power of the signal x (t).

¢) FEvaluate the normalized energy of one period of the signal x (t).

d) FEvaluate the power spectral density Sy (w) of the signal y (t) at the filter output.

e) Fuvaluate the average power y2 (t) of the filter output signal y (t).

(oo}
Problem 12.36 The signal v (t) = Z 0 (t—12n) s applied to the input of a linear system
n=-—oo
of impulse response h (t) = sin (7t) [u (t) — u (t — 12)]. Ewvaluate the power spectral density of the
filter output signal y (t).

Problem 12.37 Let x(t) be a periodic signal of period 5 X 10~2 seconds and exponential Fourier
series coefficients X,,, evaluated with an analysis interval equal to its period, given by

1, n==1

Y. — +35/5, n =42

") (1F25)/10, n = +4
0, otherwise.

The properties of the message m (t) are m(t) =0 Volt, m?(t) =2 Watt, |m(t)|ma =5 Volt.

M (f) =0 for |f]>7.5x10° Hz

For each of the five possible frequency responses of the bandpass filter evaluate the mazimum
amplitude of the modulated signal y(t).

Defining the Harmonic Distortion Rate HDR as

P,
HDR = = x 100%
Pr

where Pp, is the average power of the signal harmonics other than the fundamental and Pr is the
total signal average power.

a) FEvaluate the HDR of the signal x(t).

b) The signal x(t) is applied to the input of a filter the transfer function of which is given by

1

H(s) = .
( ) s+1 s—s/(4007)

Evaluate the HDR of the filter output signal y(t).

Problem 12.38 Let x (t) = v (t) +av (t —to), where v (t) is a power signal and to is a constant.
Show that x2(t) = (1+a”)v2(t) + 2ary (to), where a2 (t) is the average power of z (), v? (t)
is that of v (t) and 7+ (to) is the autocorrelation function of v (t) evaluated at t = to.

12.20 Answers to Selected Problems
Problem 12.1 a)
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i)
y(t) = 3 sinm(t—11n) {u(t—11n) — u(t — 11n — 11)}

n=—oo

Y (jw) =27 i Hpd (w—nwo)

=—jr [e_j”"“BT/QSa (nm — BT/2) — e~ 9" =I38T/2 8¢ (n + ﬁT/Q)} 0 (w — nwo)
Y (jw) =
jr 3 [e*f’”"ﬂ'“”/?Sa (nm — 117/2) — eI =I17/2 G4 (nyr 4 117?/2)] § (w — n2m/11)

ii)
Y (jw) = —jm {6 (w—7) — 6 (w+6)}

T5/2, n==6
Y":{ oj . n#+6
b) h(t)=sinmt{u(t) —u(t—12)}

b) h(t) =sinwt{u(t) —u(t—12)}.
en (1) = (T*/4) [e7/2 Sa {(w — m) T/2) — eI+ 8a {(w + m) T2} ’

y (t) = sinwt.
Sy (w) = (m/2) {6 (w —m) + 6 (w+7)}
Problem 12.2

a) The signal, having an impulsive spectrum, is periodic. b)

Sf (w) =986 (w) + 187 {6 (w — 27 x 10*) + 6 (w + 27 x 10°) }
+27T{5(w—871' X 103) + 6 (w+ 87 x 103)}

P=f2(t)= Y [F|>?=49+2x9+2x1=069
d)
1 2w -3
P=—-F E=TP=="x69=69x 10
T w0

o _ [Fi3K n=+1
"0, n#£ElL
@)=Y |G =2x9K* =18 K*

Problem 12.5

c) E=04373A%/n
Problem 12.6

857
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Y, = 2(10%3&;‘5)7 n =+l
0, otherwise
Sy (w) = 2w Z V7|6 (w — nwo) = 27 x 0.1475 {6 (w — B) + 6 (w + B)}

y? (t) = 0.295
Problem 12.7
See Fig. 12.22

y(t)

ﬁ)

1

101 [][] e

43210 1 2 3 4 5 ¢ 0 t
(a) (b)

)

N~

0 1. 2 3 4 5 t
(c)

FIGURE 12.22
Figure for Problem 12.7

a) Ey =ooFEy (t) =1/2 Joules L
b) The average normalized powers are x? (t) = (1/2) -1 =1/2 Watt.
y* () = 0.
y (t) is an energy signal since E, < 00, z (t) is periodic since z (t) is periodic. The signal z (¢)
is therefore a power signal.
Problem 12.8

a) .
Her ()= ao9mms 11
K 2
Hpp (s) = - -
(s24+1)" +1.4142s(s2 4+ 1) + s2
K=1
b)
wr, = 1.6180
¢)

|Hpp (jwo)| = 5.01

y (t) a sinusoid of amplitude A = 35.07, average normalized power 614.95 Watt.
Problem 12.9

a)

v2 (t) = 6.5 Watt.
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b) *Energy signal, being of finite duration
By, = [; (t*/16) dt = 1.333 joules
¢) E, =11 E,, = 14.63 joules
) y2(t) = £+ Ew = 0.267 Watt.
Problem 12.10

Q.
<

a) z (t) = 0 since X (jw) has no impulse at the origin w = 0.
b) =z (t) is not periodic. To be periodic the spectrum has to be composed solely of impulses.
c) See Fig.12.23
|Z(jo))
T
n/2 /2 /2
1
250 2.58
© 28 P B 2p @

FIGURE 12.23
Figure for Problem 4.10

Problem 12.11

a) Total Energy :A2/2 watt. Power signal

b) Total Energy :A2/2000 Joule. Average normalized power = 0. Energy signal [equal to a single
period of v (¢)].

c) 22(t) =1 (1—e%) =0-15. Power signal. Energy = oo

d) 22(t) = A*> |, Power signal. Total Energy =oo.
Problem 12.12

a)
y2 () = 2.5 Watt

b) Note that the average power of a sinusoid of Amplitude A is A%/2

we = 2565.1 1/s

¢)
K =0.8944
Problem 12.13
a) ;
V (jw) = 5 Sa (0.25w) e 7025
F (jw) = 3076 (w) — 10e 77/56 (w — 7) + 10e’ 7™/ (w + )
15,n =0
Fn{ F(5/m)eTI™™/6 n =41
0, otherwise
b)

0 (W) = |V(_jw)|2 = 25 Sa” (0.25w)

P = f2(t) = 230.07 Watt
Problem 12.14

— T 257
y(t)=f(t) H(0)= 15m =3.984
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Problem 12.15
a)

X, =1, -0.9, 0.636, —0.301, 0, 0.18

for n =0, £1, 2, +3, +4, +5 respectively, and X,, = 0, otherwise.b)
See Fig. 12.24.

|H(jo)| arg[H(jo)]
1
1 n/2
| ) | 100n ) 500n
-500% -3007-100r 100% 300 500n ©  -500m -100x 9]
2 +

(a) (b)

FIGURE 12.24
Amplitude and phase of frequency response, Problem 12.15

c)
Ya = F50.4775, Ys = £50.3001, Ys = F;0.135, Y, =0, otherwise.
d)
y (t) = 0.955 sin 2007t — 0.6 sin 3007t + 0.27 sin 5007t

Problem 12.16
a) See Fig. 12.25

x(t) O ¥(t)

Delay

FIGURE 12.25
Figure for Problem 12.16

b)
h(t)=6@#)+6(t—7), H(jw)=1+e 77
c)
Sa (w) = 2m {2.5%6 (w — 20007) + 2.5° (w + 20007) }
d)

Sy (w) = 27 x 2.387 {4 (w — 20007) + J (w + 20007)}
Y2 (t) = % / Sy (w) dw = 2 x 2.387 = 4.775 Watt

See Fig. 12.26
Problem 12.17
a)
1
=)=
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S, () S,(®)

2m x2.387

A

2000r | 2000 © -2000r | 2000x
(a) (b)

FIGURE 12.26
Figure for Problem 12.16

b)

w? + 49’
0, otherwise

i 1.1 <w<13
gy (W) =

Problem 12.18

Sov (W) =7 [0 (w—W/4) + 6 (w+ W/4)]
Syy (W) = (1567/16) [0 (w — W/4) + 6 (w + W/4)]

2 (1) = 15/16 = 0.9375 Watt

Problem 12.19
a) See Fig. 12.27

v(t)
/\ 10
-T2 \/”2 t

FIGURE 12.27
Figure for Problem 12.19

E=50T, P=0, & (w)=|V(w).

v (W) = 25T% {Sa® [T (w — B/2)] — 2Sa [T (w — 3/2)] Sa[T (w + B) /2]}

+25T7% {Sa® [T (w + B) /2] } -
b) 1007T
Problem 12.20

5, n==1
V=1 Fj2.5, n =44

4, n==+10

25, n==+1
S = Vo> =< 6.25, n = +4
16, n=+10

861
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Problem 12.22
a)
For —to < —t+b—to<b—tpie. 0<t<b
Tvv(t)z—t—l—b—to—‘rto:b—t
For—tog—t—togb—to ie. —bStSO

roo(t) =b—to+t+to=b+t

b)
Ry (jw) = bQSaQ(bw/Q)
0
e(w) = Row(jw).
E =1 joules

Problem 12.23
a)

|X (jw)|> = (1 - 2ecos (w) + €7) / (1 +w?)
b)

Y (jw)* = ot
Problem 12.24
a) Energy : f;oo (tft)2 dt = 0.5.
b) V (jw)1/(1+w?)

Energy= 5~ j;: Tordw = 3= [tan™! (w)]tz: =0.45
Problem 12.25

a) Energy signal.

b)

The energy spectral density is 1/ (1 + wQ)
¢)

0.25.
d)

0.45.
e)

Too = 0.5e " (t) + 0.5t u (—t)

£)

Freww ()} =1/ (1 + w2)
Problem 12.26

a) E, =4.
b)

E,=2
c)

E, =0.383.
d)

E, =05
e)

E, =4.
Problem 12.27
a)

FE = 45T, Joule.
b)
E = 22.5T, Joule. P = 22.5T,/15T, = 1.5 Watt
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c)
P =1 Watt.
Problem 12.28

a)
E=05+(4x05)+05=3
b)

Ss (W) =0.637[0 (w+7) + 6 (w—7)]

Problem 12.29
5Sol 51

a)

P=17
b) P =0.75
c)

Q)

P=3

P =33.33
Problem 12.30
a) 22(t)=3. b) v2(t)=5.
Problem 12.31

Sy (w) =2m x (9/8) [0 (w4 1207) + § (w — 1207)]
+27 % (36/13) [0 (w + 1807) + 6 (w — 1807)]
y2(t) =178

Problem 12.32
Sol 54

a) x2(t)=25. b) y?(t) =04. w.=2565r/s. c¢) y?(t) =0.4K =0.894.
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Applications of Angle Modulation

i. it is used f'or commercial radio broadcasting, TV sound transmission,
cellular radio, microwave and satellite. communication systems.
C)./AMPLITUDE MODULATION

ﬁfmplit-llde modulation 1s the process of changmg the ampllt'ude Of the carrier
signal inaccordance with the amplitude of the modulating signal. Frequency
and phase of the carrier signal are not altered during this process.

Let the modulating signal and carrier signal can be written as
vm(t) =V, Sin O t : 118

ve(t) = Ve Sin oct e 4

According to the definition, the amplitude of the carrier signal is changed
after modulation,

Vam = Ve+ v, (t) = Ve + Vi, Sin o, t -

Vs '
= VC[I +-\—,C—.Smmmt} =Ve (1 + m, Sin o, t) a8
m, = Vn/Vc = “modulation index or depth of modulation”

3. AM ENVELOPE

The shape of the modulated signal is defined as AM envelope,~bécause, it
contains all frequencies that make up the AM signal and it used to
communicate the information through the system.

The instantaneous amplitude of modulated signal or AM envelope can be

written as
vam(t) = VamSin oct g
Substitute the Valug of Vau in equation 7
PRy oyl oy s 0 O Sint gt
P2 N Sin we t + m, Vi Smmmt Smcoct .8
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we know

vam (t)

Sin o, t Sin oct

= Vcsi.n (0Ct+

2

Ve

% ;

Cos (0c— )t - Cos (0, + ¢ )t
2 B

[Cos (oc - om)t ~ Cos (¢ + ¢ )

vam (V)

‘e ,'- mlv | l ., : '- ’ : 3
= VcSin oct + ——=< [Cos ’(O?c,—_‘&_)m‘)t ~Cos (0¢ +-°)r.{)t] " :

5

Figure 1 shows the graphical representation of amplitude mOdU-laﬁon"N |
It clearly shows that the amplitude of the carrier is varied in P ave,
with the modulating signal while frequency of carrier wave remamsalt\;e

g
same.

/\ —> t
N\

{a) Modulating Signal

i bds by e

%
y

(c) Amplitude Modulated Signal

Figure 1 : Graphical representation of AM
It is important to note that,

i if message signal is absent, the output is simply the carrier signal

ii. The shape of the envelope is identical to shape of the modulating signah |
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;/ﬁu FREQUENCY SPECTRUM AND BANDWIDTH

The equation (9) of an amplitude modulated wave contains three terms.
The 1st term of R.H.S. represents the carrier wave. The 2nd and 3rd terms

are identical which are called as "lower side band (LSB) and upper side
band (USB "

Vam(t) 1
A VC
mIVC oA————fF=———— mva
2 LSB | USB 2
— O —— O
WOc — Om o Wc + 0, i
|, BW =2¢, l

Figure 2 : Frequency spectrum of AM with carrier

Figure 2 shows the frequency spectrum of AM. It shows that two side band
terms lying on either sides of carrier term which are separated by w,,. The
range of frequency between (0¢c - @) is known as LSB and (6c + ) is
known as USB. The spacing between these two bands with respect to carrier
s Oy. The bandwith of AM can be determined by using these side bands,
Hence "BW is twice the Jrequency of modulating signal".

}‘PHASOR REPRESENTATION OF AM WITH CARRIER

Carrier

m, V

—_C (LSB)
2

Figure 3 : Phasor representation of AM

woualditieu Lly el ouvaliiivli
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DBT L e SRR LT ‘

.o 3 shows the phasor representation (.)f g A the gaeet
Figure 3 S tation of AM, where Vc is carrier wave phasor, taken
way of reP;eSt:: s s sidebands having a frequen(;y of (0 + A :
reference p l.aeS r-épresented by two phasors rotating in Opposite dirzct{x
(mF @) laar frequency Of Om: The net or resultant phasor is v i b»f(tj'(","
:rvelct:ltmorals‘fxun of two side bands with carrier. It depends on the POSiﬁOﬂ'o'fi"~
sideband phasor and carrier wave phasor. ' g0

o "
SR

1

oy . . 01:
some time subtracts. The maximum positive amplitude of the envelope ocegse |

if the carrier, LSB.and USB all are have positive values or in Pha"gp

That is the phasors for the carrier and LSB and USB combine SOMetimes

(Vo = Ve + Visp + Vysp)- The minimum positive amplitude of envelop‘é
occcurs if the carrier and the side bands are in out of pha

Voin = Ve — Viss — Vysp as shown in figure 3. e
V[ 6, COEFFICIENT OF MODULATION OR PERCENT MODULATION
MODULATION INDEX
The modulation index used to describe the amount of amplitude changfié
occured in AM envelopes. It can be computed as follows. g
VAM rT -~ - ! 33‘-;1
M\ { e 7 T .-
| \ / \ 2Vm,’ % V.V e
. J \\ \L } \\ min max il v-—;
0 A AR AL e
WRINTANANEE
\\\ ,I i _\\ ;’ \ I, .
-VAM g \ ’/ \\ /7 1 4
Figure 3(a) Amplitude modulated signal
From Bgure 3), gy, L :
T modulaung)max = Vmax - Vmin :
Vil =
m ‘(mOdulating) max = Vmax i Vmin
and v, . . ‘ 2
(Camer)max — vmax i Vm i
= _._Vmax -~ ( Max ~ Vmin) Vmax + Vm.
3 2 , e in

TR e
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\A V. V.
Therefore m, = 7 o ( s Vm'n)/z _ \'rmax —Vmin 12
¢ (V'"“ +le-n)/2 - Vmax + Vmin |
IR Vomy i, 513

fofcREEs OF MODULATION s
The modulating signal is preserved in the envelope of amplitude modulated

signal only if Vi, < V¢, then m, < 1
Where Vi, =  maximum amplitude of modulating signal

Ve = maximum amplitude of carrier signal.

There are three degrees of modulation depending upon the amplitude of
the message signal relative to carrier amplitude.

i) Under modulation ii) Critical modulation iii) Over modulation

A
Vin(t)
0
t
~ (a) Under Modulation: m, < 1
Vin(t)

AT e

V(0 4 (b) Critical Modulationm =1
m(t) T

(c) Over Modulationm, > 1

Figufe 4 : Three degrees of modulation
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i

i). Under modulation
In this case the modulation index m, < 1 (ie.)) Vi, < V¢

Tl
It is shown in figure 4(a). Here the envelope of amplitude modulated signd .]
does not reach the zero amplitude axis. Hence the message signal ig fil
preserved in the envelope of the AM wave. This is known as “Uney
modulation.” An envelope detector can recover the message signal Withoy
any distortion.

ii).. Critical Modulaﬁon
In this case the modulation index m, = 1 (ie.) V,, = V¢ el

It is shown in figure 4(b). Here the envelope of the modulated signal just
reaches the zero amplitude axis. The message signal remains preserved. Thjg |
is known as “critical modulation.” In this case also the modulated signa14
can be recovered by using an envelope detector without any distortion.

iii). Over Modulation

In this type, the modulation index m, >1 (ie,) V, > V¢ ..o anl08

It is shown in figure 4(c). In this case the amplitude of modulating signal is
greater than carrier amplitude. Therefore that portion of envelope of the
modulated signal crosses the zero axis, So, both positive and negative
e.xtensions of modulating signal are cancelled or clipped out, as sho;gvn in
figure 4(c). The envelopes of message signal are not same ’This is called
envelope distortion. Due to this envelope detector provides di:storted message

signal. Thus it is.advisable to avoid
. . . over modulation . § s ;
without distortion cannot be recovered otherwise original signal

<AM POWER DISTRIBUTION

P s 3
o 1y bt Plsm + Pugg A
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2.9
vz A v2 2
Pt = camer . _"LSB +VUSB 18
R R R '
Where,  Vamier = RMS value of carrier voltages. eof w19
Viss = Vygg = RMS value of upper and lower side band
voltages
R = Resistance in which power is dissipated
vioo (Vel2) v
Pearrier e . 20
R R 2R
» y
’ maVC
_2
V2 ( 2) m2V?
Similarl ’ P = P, = S \ B .. a'c
y LSB USB R R SR sl
Ve = maximum amplitude of carrier wave
maVC . . s
Vgg = T, = maximum amplitude of side bands.
V¢ mlV, m?v2?
We kn = Pc+Plgg+Pygp = —S+—2C4—2C :
. ow P ct P+ Py = So+—op ~ 22
2 2
Vg ITI:VCZ - _Y£_ ]+£n_
Therefore - P, = R @R "R 2 i3 23
We know that
i V2
PC = -—C'.
2R
il -
thus P, = K [H 2‘] | .. 24
‘ Or ' ~‘: 4 :‘ —-LJ }\1;:::-2? :‘ . #w 25

Sedaiiricu i.')y cailiiroualliici



2.10
If m, = 1 le for 100 % modulation

L SR
then — = 15 oor | Py =71lo¥c

C ;

I\P 3
Pc
o o
Prsp Pyss
> |
OC - Oy ¢ Oc + Oy

Figure 5 : Power spectrum of AM

The power spectrum of AM is shown in figure 5 it is important to note

that, if m, = 1, the maximum power is the side band is equal to only one If
fourth of the power in the carrier, it proves that the most of the power us
wasted in the carrier. 4 b
pl
9. AM CURRENT RELATION AND EFFICIENCY
i 1
m> ;
From equation 25 we get P =F [1"'7{' |
We know P, = I2&R and Pc = I-2R 41 n
m? 3 L
Hence, I = Ié[1+-2—‘] or 278
A e
Where I, = total or modulated current; Ic = carrier curre.ﬁt.
% Efficiency
ggcanbe defined’as th’e ratio of power in sidebands to total power, because L
side bands only contain the useful information, &
Power in side b B
%n = I'in side band i
Total power x 100 . 28{:"
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2y 2 2

P, L MV
total ; Xé I+m: it 29
2R 2 _
Ln:_\lci m:PC
= — 4R — x 100 = SRR PR
e 1+ P |14 ... 30
2R 2 c 1t 5 |
T iy .31
1 ,
If; ma = 1 then 0/0 Tl - E X 100 o 33.30/0. o 32

From this we conclude that only 33.3% of energy is used and remaining
power is wasted by the carrier transmission along with the sidebands.

10. MODULATION BY SEVERAL SINE WAVES OR COMPLEX
- INFORMATION SIGNAL

In the previous section, AM for singne message signal were analysed. In
practice, modulation of a carrier by several sine waves simultaneously are

" needed.
Let Vl,'Vz, Vi wonss etc., be the simultaneous modulation voltages_ with
frequencies f.j, fng fms - - - - Then the total modulating voltage V, will be

equal to the square root of sum of square of individual voltages.

ml
Vam(t) = Vi sinoct + Ve {[cos (0¢ — 0om)t — cos(oc + omp)t]+

[cos (w¢c — ©Op)t — cos(Oc + Op)t]+...}

Let” ' Vt=\/V,2+V22+.... | c. .33
',Dividing both sides by V¢ we get
ER o s 3 2 2 2

i VoM +V22+ S T - \/X‘;+1§-+ ...... 43134
e Ve . Ve Ve Ve
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2.12 - .
2 .
m, = \/;12 +m2 4 eves .-, 35 Y\
i s
Modulation index can also be found out by usil.lg the above.principle tha(
while modulating the carrier simultaneously using several sine Waves,
carrier power will be unaffected, but the total side band power will pe T
sum of individual side band powers. Hence :1
PSB = PSBI + PSBZ + e L3
Pom, s .. ion 36
We know that Pgg = 5 By substituting this in equation .36, we get
I
2 2 2 .
Pem;  _ PC;nl +Pc;n2 .o T
’ V
m{ = mi+mi+ ..
my = \/m12+m%+ ..... L0380 v

1t
The total modulation index must be less than unity. If m, is greater th e

unity, over modulation occurs results in distortion in the output, hence care
must be taken at the transmitter side to avoid this problem.

\Cil. DOUBLESIDE BAND SUPPRESSED CARRIER AM (DSB-SC-AM)

i) Two important parameters of a communication system are transmitting

power and the bandwith. Hence saving of power and bandwidth are
highly desirable in a communication system.

ii) In, AM with carrier scheme,
and the bandwidth. In order
the carrier may be suppress
information. This scheme is

Carrier Amplitude Modula
and USB terms,

there is wastage in both transmitted powet
to save the power in amplitude modulatio®
ed, because it does not contain any use
c.alled as the Double Side Band Suppresse
tion (DSB - SC - AM). It contains only L%

resulting that a transmissi ith i ice thé 1
frequency of the message signal. csion: bandvith s tuies 5 C
Let the modulating signal vy (t) = vy sin @t ;
m m
and the carrier signal vet) = Visin t |
£ Wc

oldlirieu py cdiinscariier
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when multiplying both the carrier

and : .
is the DSB - SC AM signal message signal, the resultant signal

Vlbssse =V, (1), (1)

Therefore V(thpsp.sc = Vi sin o t . Ve sin oc t -39

Vi . Vesin o, t . sin oc t

VT '
V(t)psese = —"‘Z—Q[cos (co_c ~mm)t7cos(coc+mm)t] ... 40

In this case ﬂ.ze product of ve(t) and v, (t) produces the DSB-SC-AM signal
thus, we require product modulator to generate DSB SC signals.

We know that,
mavC
2

When the equation.41 is compared with equation 40 the unmodulated carrier
terms V¢ Sin @ct is missing and only two side bands are present, hence the
equation (40) is called as DSB - SC - AM.

vam() = V¢ sinot+ [cos (0, —w,) tcos(og +a,)t] . . . 41

' (t)A LSB USB
m'vc ----------- F, Jant N
2
— O —H— O —|
i - o

k— BW = 20,, —)|

Figure 6 : Frequency spectrum of DSB - SC - AM

Figure 6 shows the frequency spectrum of DSB - SC - AM. It shows that
Carrier term wc is suppressed. It contains only two side band terms having
the frequency of (oc — ®p) and (wc + ®p). Hence this scheme is known as

DSB - sC - AM.
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i

ﬂﬂﬂﬂ

a) Modulahng signal

N

VUV

Phase
reversal

f\

T
VT

b) Carrier signal

|

T

C) DSB-SC Modulated signal

Figure 7 . Graphical Representation of DSB - SC - AM

Figure 7 shows the graphical representation of DSB - SC AM, it exhibits the

phase reversal at

Zero crossing.

Phasor diagram of DSB - SC - AM

—

Figure 8 : Phasor diagram of DSB-SC-AM

USB
A
~
m \\
N
\\
Resultant N A
4
2V
// DSB AM
L’
m / 4 J Ll;f
5 "
p f
LSB

o)
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Assume that the coordinate System rotates in anticlockwise direction at an
angular frequer'lcy of 0, Let us assume the carrier phasor is the reference
phasor and oriented in horizontal direction as shown in figure 8 by the
dotted line. (because it is suppressed after modulation).

m,V,
The USB term 5 < cos(w. +®,)t rotates at an angular frequency of oy in

anticlockwise direction and the LSB term m'2V° cos(oe —®,)t rotates at an

angular frequency of w,, in clockwise direction. Hence the resultant amplitude
of the modulated wave at any point is the vector sum of the two side bands.

Power Calculation

We know that, the total power transmitted in AM is

Py = Pearrier + Pisg + Pyss
MR, mVE omVE W mVe "
2R &R 8R 2R 4R '
V2 m’ m,
_ =< 2 =P.|1+—
- 2R[+2] C[ > .. .43
V2
Where Pc = 'ﬁ%
If the carrier is suppressed, then the total power transmitted in
DSB-SC-AM is
P, = Piss+Puss L. 44
We know that,
m?V,’
_ _ ...45
Pisg = FPuss SR
m’Vc2 m:vcz mi V—C2
Therefore Pk = SR * S8R 2 |2R
2
'm; ;
o= R °
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i Bk | e,
Power saving = P : :

% Power saving =

= x 100 Teky
x 100 2 18

2 .
If ma = 1 then power Saving — ? X 100 - 66.79/0 (1.6) 66-7% Of power 'ITI‘

is saved.

| " In
| mo
Due to the suppression of the carrier wave, the power saving is increasing R
from 33.3% to 66.7% )
Let
Smitting power and bandwidth are
scheme has been Introduced in which
ponent but the bandwith
possible by eliminating one
We
Hen
We
 Whe
Hen,

[ R NN L)
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_J V (t) |
0 =9Q° 1
AF or 0 )l AM

Message j

Signal RF (or)
ey Carrier 0 =90° >
V(t) Signal

AM
V,(t)

Figure 9 : Block diagram of SSB-SC-AM
The SSB - SC - AM can be obtained as follows.

" In order to suppress one of the side bands, the input signal fed to the

modulator 1 is 90° out of phase with that of the signal fed to the modulator
2%

Vin - sin (0pt +90°) V., sin (oct +90°) 49

Let Vi(t) =
Vi(t) = V. cos ont. Ve cos oct
Vo) = Vg .sin opt. Ve sin oct .. .50
Vihlsss = Vi(t) + Va(t) six DL
= VeV [sin ot sin oct + cos ogt. cos act]
We know that sinA sinB + cosA cosB = _9_9%—_3;)
We know that for DSB-SC-AM
Vps(t) = V"'ZVC [cos (o¢ - Om)t - cos (¢ + wp)t] o % %00

When comparing equations 52 and 53 one of the side-band is suppressed.
Hence this scheme is known as SSB-SC AM. ! -
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F

V. a.sc(t) : j
17 LSB 1 B
m.VC o) g G (—— w—— —q ‘ i
2 T
1 P‘
- o, e 0 - ] ) of
—— o - ¢ Pc
0 O (® o o)m) - ((Dc + Cﬁm)
%Y

Figure 10 : Frequency spectrum of SSB - SC - AM

pectrum of SSC - SC - AM is shown in figure 10. P

# The frequency s
the carrier and

shows that only one side band signal is present,
other (upper) side band signal are suppressed. Thus the band wid
required reduces from 2o, to Oy i.e., band width requirement is reduce

to half compared to AM and DSB - 5C signals. 1

@ The graphical 1epresentation and phasor diagram of SSC - SC - A}ﬂ
system is shown in figure 11 and 12.

V“’“’Ammm he |
] ' Jys' > t ' Sav

(i.e

Figure 11 : Graphical representation of SSB-SC-AM

1 % P

Figure 12 : Phasor diagram of SSB - SC - AM !
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Power Calculation : SSB - SC - AM :

Total power saved in SSB - SC - AM is calculated as follows

Power in SSB - SC -AM is P”, = Pgg = 1 m,? Pc

Power saving with respect to AM with carrier

i Pt — P:" :
Power saving = P Y
t - P i s
Where Py = Total power transmitted
m, m, ’p.  m?P,
1+"‘2—° Pc— 2 PC Pc+ma c _Mm,Ye
Power Saving = ! 2 = 2 4
m? m’
1+—=1| P, 1+ P
m:P [ i‘ﬂ 4 + ma2
P, +—4-C~ 1+ A P, ( Z 4+m
= 2 = = —= = 1 2 2.
: 2 2+ 4-‘*'211’1l
[1+ } P, 1+0e | p_ ( m )
L 2] 2
. 5
If m, = 1 then % Power saving = = =833 % w55

6

Saving of power in SSB-SC AM with res

pect to AM with suppressed carrier
(ie., DSB - SC - AM).

Pt '_Pl.
= T .. .56
-l-mazPC _lmazpc lmach
- 2 4 s o ol 57
2 1 e
—2-m3 PC Emnzpc
1
= —x100
2 . 58

% Power Saving = 50%

P
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It has been concluded from the above analysis that in AM with carrier the

F
L m - P~
total AM power is Ll ""2_:| times the carrier power. If the carrier is suppresgeq o
only the sidebands are transmitted, then 66.67% of power is saved. In addiﬁm‘
to carrier, one of the sidebands is also suppressed, the power saving is 83.3%'
over AM with carrier.
Advantages and Disadvantages of SSB - SC - AM -
Advantages i)

i) Band width of SSB - SC - AM is half that of DSB - SC AM. Thus twic!
the number of channels can be accommodated at a given frequency] i)

spectrum.

ii) No carrier is transmitted, hence possibility of interference with other
channels are avoided.

There is a1 unprovement in signal to noise ratio from 9 to 12 db at the
receiver output ovex DSB-SC-AM.

iii)

iv) During demodulation of SSB, carrier of same frequency and phase of
requisite strength is to be inserted, and at the receiver one can get output

. : " _ At

audio signal without the knowledge of carrier. Hence some secrecy is

automatically achieved.

It eliminates the possibility of fading. Fading occurs due to multipath
propagation of electo-magnetic waves. Thus R.F. waves at same frequency] 1)
may travel by two path which may be of different wave lengths so thatf  jj)

signals received by these paths may be of unequal amplitude and phasesy ...
which results in fading. The fading is selective over the received band. 1)
If the transmitted signal consists of AM with carrier then the following iv)
three types of selective fading occurs. 13.

a) One side band fades completely leaving other sideband and carfief] @
unaffected. ]
]

b) Fading the carrier alone.

. i
c) Fading the amplitude and phase of one sideband component withy
respect to other side band and carrier.

Since in SSB only one side band is present, thus fading is eliminate9
i

3
|
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vi) SSB provides an improvement in SNR of atleast 9db. Thus in order to
get the same SNR at the receiver output the transmitter average power
output may be reduced by 9db. Therefore SSB transmitter requires less

number of amplifying stages. Hence net volume of operating cost is
reduced.

Disadvantages

i) The major draw back is that the transmission and. reception of SSB becomes
more complex and the required performance standard is very high.

ii) For demodulation of SSB, carrier is reinserted at the receiver. The frequency
of the reinserted carrier must be within 15 cycles per second of the carrier
frequency in case of speech and 4 cycles per second in case of music.
Such a requirement complicates the demodulation process. Hence it
becomes necessary to transmit the pilot signal or the carrier voltage itself
at a very low level for synchronising the receiver oscillator frequency.

- This signal has to be filtered out at the receiver with the use of highly
selective filters. Design of these highly selective filters is thus involved
in SSB receiver. This complexity contributes to an addition in cost.

Applications of SSB - SC - AM

Because of complexity and cost of SSB receiver this system is not used for
commercial broadcasting. It is mainly used.in

i) Police wireless conuhunication.
ij) SSB telegraph system

iii) Point to point radio telephone communication

iv) VHF and UHF communication systemD
-
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2.36
(iii)Instantaneous frequency (wy) . i
i :hstant of time 1.e
It is the frequency of the carrier at any 1ns » j
d £
mi(t) = 'a't'¢(t) — dt [COC t + O(t)]
= (O Ty + 9’(t) |
|
(iv) Instantaneous frequency deviation 6‘(t) | T .
/ 1t is the change in frequency of the carrier. It can be defined as the ﬁ;
time derivative of instantaneous phase derivation.
Dur
i o eiost
Deviation sensitivily Dus

The deviation sensitivity provides relationship between output paramey The
parameters for FM, the output frequency is vari

changes inrespect to input )
inaccordance with the amplitude '_of the modulating signal.
» Koy = sw _ change in outpuf frequency , Wh
= ™M~ v anae in input voltage _ To
similarly for PM, the output phase is varied w.r.to amplitude of modulaﬁ* e
signal. |
N A
1.e., Kpm = Vm- or A6 = Kpm VM 0, =
X { pro
@5. FREQUENCY MODULATION | ™
e
“Frequency modulation” can be defined as the process by which the frequ
of the carrier wave is altered in accordance with the instantaneous ampli -
- of modulating or message signal. The mathematical representation of frequ
modulation is obtained as follows: i
Let the message signal vp(t) = Vi, cos opt 4 et
and the carrier signal vc(t) = V¢ sin [oct + 6] Fro
Where \Y% N
m = maximum amplitude of message or modula'q Th
signal ! va;
Ve = maximum amplitude of carrier signal
Om = angular frequency of modulating signal
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§ o PR
o = angular frequency of carrier signal
¢ = total instantaneous phase angle of carrier
¢ = (oct+90)
W vet) = V¢ sin ¢ = V¢ sin (oct + 6) v O
To find angular velocity, differentiate the equation (3) w.r.t. 't
. d¢
t i.e., d_t = oc = ¢’(t)
During the process of frequency modulation the irequency of carrier signal
is changed in accordance with the instantaneous amplitude of message signal.
.~ Therefore the frequency of the carrier after modulation is written as
l o; = wc + Kvpu(t) = oc + KV, cos ot . 4

Where K = Constant of proportionality.
To find the instantaneous phase angle of the modulated signal, integrate
equation (4)

¢ = Ia)i dt = I (oc + KV, cos opt)dt = oct +

N s
™ Sin Om,t + 91

m

8, = Integration constant, it is neglected because it plays no role in modulation

process.
The instantaneous amplitude of the modulating signal is given by

v(my = Vesin gy = Ve sin (oct + Kme sin @.t) o B

. 6

Ve 2 Vs (oc 2 s g

Where  [impap; =i =t-nmodulation index: of FM
P DA M o R B SRR
P Piebe oy S~ ] R mes™ e LR T ek 1 e e R

1k SO

From equation (4) the instantaneous angular frequency of FM signal is
®; = o¢c + KV, cos ot

The maximum and minimum value of cosine term is +1. Hence the maximum
value of angular frequency is given by @max = 0c + KV,
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The minimum value of angular frequency is given by ®min = @c - KV, j
¢
Then frequency deviation is given by
g = Omax - Oc = OC = Dmin = KVm : .7
i
Vm‘r
Message Signal
. : - [
E ! f
v f f W
Ve 5 | | v
: : ! Carrier Signal 11
E E .: > t {
JRVATAATRATR T
-vc _____ .E :l ;
V. 5 ! E
= : ; p ﬂ ' Frequency e
! modulated signal If
v MUV U U I
.

Figure 17 : Graphical representation of FM wave

16. PHASE MODULATION

Phase modulation can be defined as the process by which changing the!
phase of the carrier signal in accordance with the instantaneous amplitude

of the message signal. The amplitude and frequency remains constant even i
after the modulation process.

Let the modulating signal is given by v, (t) = Vm cos ot

The carrier signal ve(t) = Ve sin (oct + 0)
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where 0 = phase angle of carrier signal. It is changed in accordance with
the amplitude of the message signal v(t);

ie., 8 = Kpmvn(t) = KpmVimcos ot ‘ 5 A
where Kpym = phase deviation sensitivity

After phase modulation the instantaneous voltage will be
me(t) = VC sin ((Dct + 9)

= Ve sin (oct + KV, cos opt) ... 9

pm(t) = Ve sin(oct, + mgtcos o), : 0y 10

where m;, = KVy Modulation index of phase modulation

17. PHASE DEVIATION AND MODULATION INDEX

The equation (6) compared with equation (3) thus we get
Vim(t) = Ve sin(oct + mg sino,t) = Ve sin [oct + 0(t)]

where 6(t) = instantaneous phase deviation = m; sin ®pyt.

If the modulating signal is single tone or sinusoid, then the phase angle of
the carrier varies from its unmodulated signal is known as phase deviation.

The “Modulation Index” of FM System can be defined as the ratio of
maximum frequency deviation to the modulating frequency.

® AT
ie. m = :’o_d— = :: = 0 ... 8
wg = KV, = Maximun frequency deviation
For PM

The modulation index depends on the modulating signal

ie., fﬁlb.,;}KPM Vi where Kpy = deviation sensitivity.

Frequency deviation

- Itis defined as the change in frequéncy of the carrier with respect to amplitude
. of the modulating signal, it can be written as Aw = K.V where
- Kgn = deviation sensitivity, interms of modulation index, it can be written

ab M - Bv ‘;ét—- (e D AF :PO:FJCV

W /s
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3;5 g LOW PASS SAMPLING THEOREM

J¥ The sampling process is an operation that is basic to digital signal processing
¥ and digital communication. Through the use of sampling process an analog
«¥  signal is converted into corresponding sequences of sample pulses that are
lpli‘E equally spaced in time. It is necessary to choose samplﬁing rate progerly SO
¢ that the sequence of samples uniquely defines the original analog signal.

“Sampling” is the process by which an analog signal is converted into a
v ; . ;
s ‘Omesponding sequence of samples that are spaced uniformly in time (i.e.,
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equally spaced in time). In this process, it is necessary to choose the samplip,
rgte properly, so that the sequence of samples uniquely defines or recove
the original analog signal. This is the essence of sampling theorem.

The sampling theorem states that, any band limited signal (i.e., low py
filtered signal) which has no spectral components above the frequency f,

Hz is uniquely determined by its values at uniform intervals less than 1
seconds apart.

Consider an arbitrary analog signal f(t) of finite energy, as shown ip
figure 2. It is sampled instantaneously at a uniform rate, once in every T,

seconds. Consequently we obtain an infinite sequence of samples spaced T,
seconds apart and denoted by f(nTj).

Where n = takes on all possible integer values or discrete time in sec.

Ts = Sampling period in sec.

The reciprocal of sampling period is called the “sampling frequency” or
1 .
“sampling, rate” ie. fg = T - This ideal form of sampling is called

“Instantaneous sampling”

- I the signal is sampled at an equal or uniform
intervals then it is known

as “Uniform sampling”.

The sampled function f,(t) may be written as

() = Hr*G(t) (1)
where G(t) = train of impulses = Z §(t — nT)
n=-w

thus equation (1) becomes

fs(t) _ ft . ) o

(t) n;m 8(t-nT,) = _Z f()*8(t—nT,) (2)

The G(t) is a periodic im uls T
series representation P i may b

Jnot . .
] n €% (in exponential form)
=-~w

-
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| (a) Modulating signal (b) Frequency spectrum for modulating signal
“G(t)
ﬂ\
F 1\ A~ ~ A 4\
| N v W. O 4 (W) + 4
| M.() o 1% %
!
>t C R
«T> 2 -

(¢) Train of Impulse carrier signal (d) Frequency spectrum for Impulse signal

e S S F(w)
7 \__fs(t)_dr’ ] ) !
A T ! |
\
{ \
/ ll I
/ | .|
7~ | ‘|
/ || |
/ l )
e - wm
- m 5
t K—- W, z?_—l-_ﬂ— "’I
mpled signal
(®) Sampleq signal (f) Frequency spectrum for s P

Figure 2 : Sampling theorem

Scanned by CamScanner



Y .. .

4.8 ________ DIGITALTRANSMISSION
where F, =  Fourier coefficient
| | T2 , 1< :
— 1 I G(t) e—jl‘l(.l).l dt = ? J‘ G(t)e—_)nm,tdt
~T/2 0
| T2 I
thus F, = = j §(t—nT,)e "™ dt = = 3)
-T/2
SO G(t) = > (%) e/"! substitute this value in equation (2)
n=-o
now £y = > f(t)*e! (4)

U
TD

= -

Convolution in time domain is equal to multiplication in frequency domain,
thus equation (4) is converted into frequency domain.

Take F.T on bothsides of equation (4) we get

ET [£,(0)]
ET [f(t)]
F.T [ejn(x)st]

Fy()
F(w)

2n 8(w - nw,)

thus equation (4) becomes

Fy(w)
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1 > 0]
T ) _Z Fl0).2n §(e - ne,)

n &
Tn_z F(©) 8 (0 - ne, )
== (5)
R OLICE
(Uanz F(m‘nﬂ)s)
(6)

y



Now the aliasing error becomes

If(t) -] =

O

5. e [0 gy o

m=—wo m-1/2)ag (6)
if m = 0, then ]-e™* <2 and
m+1/2)og jot m+1/2)o,
g€ < 2 | F(w) | do. @®)
thus lml>£512

4@ PRACTICAL ASPECTS OF SAMPLING / SAMPLING TECHNIQUES

In practice, there are three types of sampling techniques are used to convert
continuous time signal into discrete time signal (i) Instantaneous sampling,
(ii) Natural sampling (iii) Flattop sampling.

(i) Instantaneous sampling

The proof of sampling theorem is the example for instantaneous or Impulse
sampling.

(ii) Natural sampling

Let us consider a unit impulse train, each pulse is separated by T,. The
sampled sequence is obtained by multiplying f(t) with train of impulses shence
the resultant signal is obtained as shown in f

| gure 5. It may be seen from

the top, the pulses are not flat, but they follo

: . ) w the
input signal f(t) during respective pulse interya]s and ?\amral. V\'raveform of
“natural sampling”. e€nce it is named as

The Fourier series representation of Carrier pyls
ulses can

At | 24t & be written as
v = T X C,,Co;[_zjlllt_]
l'l"=.u TO
where A = amplitude of the (1)
T - duration of y,, Pulse
To = period of the puplsulse
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c _ Sin (nnt / T)) 1
n - Assum = = —
(nmt / T) eA=1Ty=T,= of
T 2T 2t
=v(t) = —+ = == 4t
then  £(t) = v(t) LT [Cn Cos[ T ]+c2 COS(TFS—]+...] @)

A

" M

(a) Message signal

f(0)

(b) Carrie'r signal

({y JE—
f(t) —>

silints

Figure 4 : Natural sampling

Multiplier ~ |— £(t)

The carrier pulses are multiplied by the message signal thus the output of the
multiplier is given by (Assume f(t) = A Cosont)

4
0400 = = (0 %3 [f(t) CICOS(%] +1) C, cos(—T’z—tl o }

H

k()

< ‘]T? f(t) + ?r—t [f(t) C, Cos2n(2f,)t + f(t) C; Cos2m(4f,)t + ]

5 ]

= —%— Acosw t+2[CIA Cos o t. Cos 2m(2f, )t +..... ]
m T

5 s
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4.16 e o
1 21 o 4
X Acoso t+—[C\A (Cos Qe + © )t +
= T Ts
Cos (20, — Opt)} +- C,A{Cos(2w,, + no,)t
" + Cos(2w,, — no, )t} (3)

Sl
\ S —0
.. /2 £t
© == ®
o— —< A
F(w)
}/\/\
£(t) ©
> 50 -3W -w W 3w 5w
5 TP(w)
P(t)
t—> ~— \ = 0
TF.(w)
(ke 1 =71 T=
s //' et \\
<~ ~
R
T T T T T
T 2H(0) 1
| 1 |
| \
%J l l_‘»c)
1 0

Figure 5 : F|at top sampling
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T' = 417

Thus the pulses have a constant amplitud

constant amplitude of .pulse can be chosen at any value of f(t) within the
pulse interval. By making the value of the pulse amplitude constant within

the pulse interval, some distortion is introduced as there is a deviation from
the actual value of f(t).

e within the pulse interval. The

Figure 5 shows the circuit and the mathematical model for generating a flat
top sampled signal. The switch S, closes at each sampling instant in order
to sample m(t). The capacitor C holds the sampled voltage for a time period
rat the end of which S,if closed to fully discharge the capacitor. Thus a
flat top sampled signal is generated by a process of sample and hold.

The flat top sampled signal may be considered as a convolution of the impulse
sampled signal fy(t) and non periodic pulse p(t) of width 't' and height 1",
" The spectrums of F(t) and P(t) are shown in figure 5. The spectrum of f(t)
. is obtained by multiplying F(t) with P(t). As the P(0) value is different at
different frequencies, the shape of F (@) is not similar to F(w) which shows
that a distortion will be introduced if the signal is recovered by an ideal

lowpass filter of a cutoff frequency ®p.
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2.5 Pulse Code Modulation
2.5.1 PCM Generator

The pulse code modulator technique samples the input signal x(f) at frequency
f, 22W. This This_sampled_'Variable amplitude' pulse is then digitized by the analog to
“'dngntal converter) The parallel bits obtained are converted to a serial bit stream.
Fig.2.5.1 shows the PCM generator.

v digits
Low pass T Binary Parallel PCM
t x(nT.) , (nT,) aralle
X o Ther —wl sH s L 5] encoder > 1o sorial —
fo=W (digitizer) | 1 converter | r=vf
@—> Timer
fs 2 2W
Fig. 2.5.1 PCM generator .. e

In the PCM generator of above figure, the signal x(f) is first passed through the
low-pass filter of cutoff frequency ‘W' Hz. This low-pass filter blocks all the frequency

components above 'W' Hz. Thus x(f) is bandlimited to 'W' Hz. The sample and hold

circuit then samples this 51gnal at the rate of f Samphng frequency f is selected
suff1c1ently "above Nyquist rate to avoid aliasing i.e., -

i £ s 2w

In Fig. 2.5.1 output of sample and hold is called x(nT,). This x (nT,) is discrete in
time and continuous in amplltude A cLlevel quantizer compares input x(nT,) with its
flxea 'dlgltal levels. ]Lgé_silgns any one of the digital level to x(nT) with its_ fixed

dlg_lfal levels. Tt then assigns any one of the digital level to x(nT) wh1ch results in

minimum distortion or error. This error is called quantrzatron error. Thus output of
quantizer is a dlgltal I I‘caﬂed X, (nT ). '

-".-Mm A N

e -
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Now coming back to our discussion of PCM generation, EE_F!E?{}E‘E?I@ .t?.!g,“%Llsv_a ;.
' ¢ (nTJTs given to binary encoder. This encoder converts input signal to 'v' digj |

‘word. Thus ¥, (nT,) Ts converted to 'V" binary bits. The encoder is also calleg

d}}g‘lf'lzer.'“ B s S

5

! It is_not possible to transmit each bit. of. .the binary WOf_-dl- fif}:ar‘:telﬂ-on_ :
" transmission line. Therefore ‘o' binary digits are converted to serial .1.,.115 G 1p
“generate single baseband signal. In a parallel to serial converter, QQL‘“? dy__a shift
‘register does this job. The output of PCM generator is thus a single baseban ..El,g.\r}?lfi
binary bits. h

'. An_oscillator_generates the clocks for qar_nplg and hold an p_aral_lle} .t.od S};e’rial
converter. Ti the pulse code modulation generator discussed above ; sample and hold,
* quantizer and encoder combinely form an analog to digital conyerter.

2.5.2 Transmission Bandwidth in PCM

Let the quantizer use ‘v’ number of binary digits to represent each level. Then the

’%}j.{ number of levels that can be represented by ‘v’ digits will be, }
Ei i3 gom s .. (25)
# ,
o A\}.‘J Here ‘3" represents total number of digital levels of g-level quantizer. é
i

+

For example if v=3 bits, then total number of levels will be,

g = 2° = 8 levels
Each sample is converted to '’ binary bits. i.e. Number of bits per sample = v
We know that, Number of samples per second = f

Number of bits per second is given by,

(Number of bits per second) = (Number of bits per samples)
. * (Number of samples per second) }
. = v bits per sample x f, samples per second v {2.8.2)
. The number of bits per second is also called signaling rate of PCM and is denoted
y 'r'ie., l
Signaling rate in PCM : ¢ = vf,
e
L
fhore oW . (2.5.3)
Bandwiduthﬂneed__ec'iﬂfrqr PCM transmission will be given by half of the signaling
[ | -
1
B.>-
T 2" ... (25.4) :
Transmission Bandwi 1 rici i
andwidth of PCM 1B, 2 50f  Since f 22w ... (255)45Y -
Br2ow (2.5,6');:;-* ;

1."-,' A .
TR S
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2.5.3 PCM Receiver -
Fig. 2.5.2 (a) shows the block diagram of._PCM receiver and Fig. 2.5.2 (b) shows

&y therrfz c_oni{tmded signal. ‘Thélggépgratqi:._éf. the start of PCM receiver reshapes the
L’*’h‘ %‘f_“f-?ﬂ‘.rf_"mﬂYEﬂh&p._o??e. This signal is theh"&onvertweﬂ)“ﬁejxfa’llé'l dlgltal wor ds

o ) r eaEl_ sample, R
.Shy
“al"q v digits
N RCM-Nolse pem | Serial =] Digital - 1y [ Low pass | yp(t
——{ Regenerator ——| tg parallel| toanalog |—| S/H _xq_(.)- fiter  f—=

Sery converter| - | converter : fo=W
ho]i : I o

sync |

— Timer 7 (a)
N thy
(2.5]) F ( 5/q

4 3/q

2\ ’/ \.j\ (b)
X X

b 1/q-

E 0 T T T T >t
-1 [q. -
Fig. 2.5.2 (a) PCM receiver
’ (b) Reconstructed waveform

(2-5’2} The digital word is converted to its analog value x () along with sample and

ot hold. This signal, at the output of S/H is pgssed through lowpass reconstruction filter
o get yp (). As shown in reconstructed signal of Fig. 2.5.2 (b), it is 1'mp'0551ble ‘to

" reconstiiet exact original signal x(t) because of permanent quantization error

. introduced during quantization at the tra.nsx'mtte.r._, This qua_nhzahqn error can !)e
255 teduced by increasing the binary levels. This is equivalent to increasing binary digits
L (bits) per sample. But increasing bits U m.creases t_he signaling rate as well as
transmission bandwidth as we have seen 1N equation 2.5.?) and equatzon. 2.?.6.
Therefore the choice of these parameters 15 made, such that noise due to quantization

error (called as quantization noise) is in tolerable limits.

2.5.4 Uniform Quantization (Linear Quantization)

~ quantization can be uniform or nonuniform. In uniform quantization, the quantization

.~_i_'5tep'0r difference between twg. qu
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We know that input sample value is quantized to nearest digital level. This -

antization levels remains constant over the complete  §

B



é

~value™is_compared with the previous sam

HILW LrCrriie rnuvisce.

2.6 Delta Modulation

—

We have seen in PCM that, it transmits all the bits which are used to code the

_sample. Hence signaling rate and transmission channel bandwidth are |

1 C > ] CM
To overcome this problem Delta Modulation is used. arge in P

Delta modulation transmits only one bit per sample. That is the present sampli

P%}; Vath}?'and' the indication,whether th¢
p -Sizepu. blfgnal X(t) is approximated to st}
Ximated . e - The difference between the

signal confined to two levels, 1¢

amplitude is increasgd or decreased is sent
signal _by the delta modulator. This ste
‘input signal x() and staircase™ appro
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p—

+06 and - 8. If the difference is

_E)OSlff e, then apprommafed
signal is increased by one step

.....

Te. '8, If the differencé ™ is

T

Icp size_ 2!

negative, then approximated
signal is reduced by 'S'. When

.'._-.i;f_ i

Amplitude =j-1

ARG R B s 17

the step is reduced, ‘0" is
"transmitted and if the step is
increased, ‘1’ is transmitted.

L T
P

"Thus_for "each sample, only
one bmary bit is transmitted.

Y P st o e
o ey 8

TFig. 2.6.1 shows the “analog

" Binary one
l. bil sequence
[T S REARS RN

51gﬁal x(t) and its staircase
approximated signal by the

i o
derarmend dangres b

M

delta modulator.

The principle of delta
modulation can be explained

Fig. 2.6.1 Delta modulation waveform

the sampled value of x(t) and last approximated sample is given as,

e(nT,)
e(nT;)
x(nT;)
x(nTy)

Here,

We can call u(nT,) as the present sample approximation of staircase output.

Then, ul(n-1)T,] =

Let the quantity b (n T,) be defined as,

P 4

b(nT,) =

That is depending on the
decided. In other words,

bnT,) =
D
If w h(nTe) ™5
and if b b(ﬂ Te) =
._./ Ts
(,

A
Scanned by CamScanner

= Last sample approximation of the staircase waveform.

= Sampling interval.

~—by~ "the following set of
equations. The error between

x(nT,)-x(nTy) .. (2.6.1)

error at present sample L .

Sampled signal of x(f)

-

x(nTy) . (2.6.2)

Last sample approximation of staircase waveform.

v
o

Ssgnle(nTo)] « {2:6.3)
sign of error e(nT,) the 51gn of step size § will be

+8 if x(nTy) 2x(nT,)

= if x(nT;) <¥(nTy) . (2.6.4)

+3; binary ‘1’ is transmitted

=g ;:; binary ‘0" is transmitted.
i

g ————

e P e e
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%

?

: ' _ R |

i The summer_in_the accumulator adds quantizer output (£5) with .
. sample approximation. This gives present _sample approximation. ie., L3y
H =" v = S « 4

A u(nT,) =u(@nT, -T,) +[£0] or

' = uln-DT+b(nT) ==

Sampled oy

input_+ ~ 5’ One bit | b(KTs) Suiput
i x(T,) '(R quantizer

| X(kT)

po o e = e e o e e o -y

1
]

F ul(k-1) T]

Delay

lLow pass
‘&—‘—* Output

(b)

Fig. 2.6.2 (a) Delta modulatj

(b) Deita mody)
The previous sam

: Ple approximat;
e _ on y -
sample period T,. The sampled inpyt signal s1 1S restored by dEIaying one

x(nT,) are subtracted to get error signg] e(n T-\’)(n Ts) and Staircase approximated sjgnal

Depending on the sign of e shy, S1gne
or — 4. If the step size is +3, th
‘0" is transmitted.

At the receiver shown ; :
used. The accumulato ' In Fig. 262 (b), the a4,

. ¢ L‘T Be€nerates the Shir’v, at¢éumulator and
delayed by one sampling periog T. C2%¢ approximated o now_h,és filter are

“' Is 4
- th > 1 IS
€n added to the INpy¢ 2ig Outp@t and 1
s ndl I-\ ! iS
- If \nput

— /\ £ N\ b
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Fig. 26.2 (a) shows the transmitter based on equations 2.6.3 to 2N
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7 g e
——

,i; then it adds +§ 'sFep to the previous output (which is delayed). If input is
DYy then one step o' is subtracted from the delayed signal. The low-pass filter

o1 ’bmathe cutoff frequency equal to highest frequency in x(f). This filter smoothen the

aircase signal to reconstruct x (f)

s ©
261 Advantages of Delta Modulation AU g Uik
) | The delta modulation has following advantages over PCM, x

1. Delta modulation transmits only one bit for one sample. Thus the sigpal'mg
rate and transmission channel bandwidth is quite small for delta modulation.

E:, 9. The transmitter and receiver implementation is very much simple fOf geita
modulation. There is no analog to digital converter involved in delta
modulation. '

26.2 Disadvantages of Delta Modulation

. Granular noise

/

Slope - overload - K
distortion : \
X~ | .
................. T,
Staircase S '
; approximation ; T
u(t)
, oo I elta modulation

Fig. 2.6.3 Quantization errors ind

The delta modulation has two drawbacks -

: 38 AAa b, N v A Lavhkiin :I’rnr\
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W/ 13. COMPARISON OF DIGITAL PULSE MODULATION

Parameter PCM DM ADM DPCMm
‘ e
.| Numberof |4 or 8 or Only one | Only one bits More than 1
bits 16 bits used bit per per sample but less than
per sample  |per sample sample PCM
. | Step size depends on Fixed can | Adaptivei.e., Fixed
the number not be variable
of bits varied depending
| upon the
signal variation
. | Bandwidth  [High Low Low Less than
PCM
. | Generation Complex Simple Simple Simple
. Qu.antization depends on slope over | only | both
noise or number of load and quantization quantization
G.ltortion levels used granular error occurs and slope
noise overload
occurs noise occurs
. | SNR Good Poor Better 12db greatef
than PCM
- Satmpling 8KHz 64-128KHz |48 - 64 KHz 8KHz
rate
. | Bit rate 7-8, thus high | 1, so it is 1 4-6
bit rate PCM | suitable for | suitable for
1S superior low bit rate | low bit rate
. | Application Telephony Audio and | Audio and Audio and
speech speech speech ;
processing processing Processing: |’
‘_—//,
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discrete pulse modulation, the amplitude, time or frequency of the transmitted
pulse is varied according to the information to be transmitted. In this method
PAM systems are most efficient than other systems, interms of power and

bandwidth utilization. The elements of base band binary PAM system are
shown in figure 30.

Actually the base band binary data transmission means binary data transmitted
over a coaxial cable. The input to the system is a binary sequences with a bit

. Tate of r, and bit duration of ‘Ty’. The pulse generator output is a pulse
. Waveform. It can be written as,

ag = a if the ‘K’th input bit is *1’
= - a if the ‘K’th input bit is “0°
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4.62 SMISsio

Clock
Pulses

X(t) | Transmitting SO channel ____,®9aussi,
filter v Noise

Clock
Recovery
Clpck Receiving
l pulses filter
: tput
) Outpu D ]
‘Binary data | Converter

Figure 30 : Base band binary data transmission system

The sequence of short pulse produced by pulse generator is applied to a
transmitting filter, its impulse response, ‘g(t)’ producing transmitted

signal ‘s(t)’

wW

s(t) = Z a,g(t—KT,) 5

K=o

The signal s(t) is modified as a result of transmission through the channel,
having impulse response h;(t) result in which the channel adds random noise
to the signal at the receiver input. The noisy signal is then passed through
a receiver filter having its impulse response hy(t) and its output y(t) is sampled
synchronously with the transmitter. The sampling time is determined by the
clock or timing signal generated by the receiving filter itself. Then the sample

sequenced is used to reconstruct the original data sequence by means by’
decision device.

The amplitude of each sample is compared to a threshold value ‘A’ If the
amplitude of the sample exceeds the threshold value, the decision device Z

generates a symbol of ‘1’. If the amplitude of the sample is not exceeding
threshold value, the decision device generates a symbol of 0°. If the amplitude

of the sample equals the threshold value exactly then the receiver makes ¢
guess to determine either ‘0’ or ‘1’ was transmitted.

The output of the receiver filter is given by

y(t) = L_Z B ag p(t = kTp) + n(t) (1)
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where p = scaling factor
t) = ined j
p(t) com}nned 'Mpulse of the transmit filter, channel and
receive filter
= 8(t) ® hy(t) ® hy(p) (2)

plt - kTy,) = delayed version of P(t) by kT, duration for kth symbol in the
sequence aj.

n(t) = additive white Gaussion noise

when y(t) is sampled at time t; = iT, then

yt) = n Z@ a, p(t; - kTy) + n(t) (3)
since t; = iT}, then y(t;) becomes
Y = 1 2 a (T, - kTy) + n(Ty)
= u kZ ay (i - K) T, + n(t) (4)

The sample time t; is synchronised with the transmitter clock. This means
that the instant at which pulse a is transmitted is same as the time at which
y(t) is sampled. There is some delay during the transmission, however, for
simplicity, the delay is assumed to be zero. i.e., the pulse is received as soon
as it is transmitted.

hence the equation (4) becomes

X

yt) = mapO) + 2. a pli- KTy + nt) (5).

k:—m
k#i

In equation (5) the first term represent the contribution of the ith transmitted
bit. The second term represents the effect of all other transmitted bits on the
decoding of ith bit. This residual effect due to occurrence of pulses before and
after the sam pling instants ‘t] is called “Inter symbol interference” (ISI).

In the absence of ISI term in equation (5) then the output will be

yt) =  na (6)
b impulse response p(t) is normalised, then p(o) = 1 and u = 1
g ytt) = a
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The equation (6) clearly shows that under ideal conditions, the ith transmitted
bit is decoded correctly but in practice the ISI and noises are unavoidable in

the system hence it introduces errors in the decision device at the receiver
oul-put.

The main objective of baseband PAM system design are to choose the
transmitting and receiving filter to minimize the noise and ISI. In addition,
for a given transmitted power it may be desirable to maximize the signalling
rate ‘r,’ for a given bandwidth or minimize the bandwidth required for a

given signalling rat9

| e e TR T AR T TIAATE TRAT AT A TRy o w v o - - —
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7. BINARY PHASE SHIFT KEYING (BPSK)

In a binary PSK system, binary symbol ‘1’ and ‘0" modulate the phase of the
carrier. Let us assume that the carrier is given as

L9y

() = A Cos 2np.t = /2P Cos2nf_t
for symbol ‘1’ is transmission
S() = V2P cos 2nfot

If the next symbol ‘0" is transmission

Sit) = V2P cos2nfot+m) = — 2P Cos2nf t
since cos (B + ) = - cos 0 thus in general

fS(t) for BPSK can be written as

S(Y = b() V2P cos2nf. t (1)
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where b(t) = 4 1 lor binary 1 is to be transmitted
I tor binary 0 is to be transmitted

Spectrum of BPSK signal

To obtain the frequency spectrum of BPSK signal

Take E.T on bothsides of equation (1) we get

PT, |
S(t) = -

Sy (! ?'s)"_b_]z = {Sm x(fe +f£b_”
2

n(f ﬁ.)ﬁ; n(f+f )Ty |

accordingly the spectrum is plotted as shown in figure 17.

Figure 17
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Bandwidth of BPSK signal

The spectrum of the BPSK signal in centred around the carrier frequency f.
as shown in figure 17(b). The main lobe is centred around the carrier frequency
f. and extends from f, - f;, to f, + f,, thus the bandwidth of BPSK signal is

BW = (fo + fp) = (f = fy) = 2f,

i.e., the minimum bandwidth of BPSK signal is equal to the twice of the
highest frequency contained in base band signal.

O PSK is a form of digital angle modulation. It is similar to phase modulation
in CW modulation. In this case there are two output phases, one phase
represents logic 1 and other oulpul phase I‘EPIESEHS 10giC, *0°. If the
digital input signal changes its state, the phase of the output carrier shift
between the two an;;]uf} that are 180° out of phase.

© Block diagram of BPSK (ransmilter is shown in figure 17(b). The product
or balanced modulator acts as phase reversing switch. Depending upon
the input logic condition, i.e.,, *0" or *1°, the carrier is transformed to the
output either in phase or 180° oul of phase with the reference carrier.

O In other words, in phase shift keying the phase of a carrier is switched
between two values according to the two possible messages m; and mo.
The two phases are usually sepa rated by = radians, hence it is also known
as “phase reversal keying” (PRK). The binary phase shift keying is obtained
through the system shown in figure 17(b).
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G The effect of phase reversal modulation is 10 produce a double sidebang
suppressed carrier (square wave) amplitude modulated CW signal.

) Bandpass Z(t)
Iy d t [) d ct 1K L I A5
Oreis roct filter ke e
modulator

Carrier signal
Cos w,l

Figure 17(b) : PSK generation

Data
0 0 1 1 0 1 0 0 0 1 0
+1
~1
M
Carrier NANSNAR
PSK

g no dc co .
fepresent binary ‘1* ang e o IN€ resultin

b 8 Pulses of amplitude = A¢
signal. It can be written 2 > The output of the I RS ==

multiplier will be the PS¥

Vesk () = A
Cos(mct + ¢) where A = ETE =2P
b
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if  =0.then  Vpgi (t)

A Cos wct = ’_2%3_ coswct for 0<t<T,
b

,2E
if ¢ = n then Vpsk () = — A Cos wct = ~ Tcoswct for 0 <t<T,
b

where E = Signal energy per bit

P = Power level

A = Peak amplitude of the carrier signal.
Coherent PSK Detection

The transmitted bit sequence can be recovered from the BPSK signal using
correlation receiver shown in figure 19.

2E
Let S,(t) = ‘/T—b Cosoct = A Coswoct for 0 < t < Ty (for binary 0)

,213
Sy(t) = 7 Cosoct = — A Cosoct for 0 <t < Ty (for binary 1)
b

2E
and Sy(t) - Sy(t) = Vpska(t) - Veska(t) = 2A Cos wct = 2 \/% Coso,t

It is synchronized in phase and frequency with the incoming signal. The
signal components of the receiver output are,

Soi (t) = jsl(t)[sz(t)'sl(t)].dt

T, Ty
I ACoso.t [2ACosa t]dt = I 2A* Cos’coctdt
0 0

n 1 - Cos2ot
j 2A’ [-——(2)-—'] dt neglect 2" and higher order terms.

R 2 _ 2E,
ther - [A*dt=A T,=7* T, =2E,
2

b
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Dolar \hlnuul m“ e [ntegrator '—é{"" Dle\Oﬂ
N\ 1\\\\.\‘1\; \h\hll \hn e i i
. A . T Sam
\_\n_'.‘(u\“l 10) COS((l)ot +00) -

] 'vj

2
T,
Figure 19 : Optimum coherent PSK system using correlators

Vi (D=1AC0s )t
. ?w(l) A Cos ot A*Cos*(w,t +0) Co2{w t +0)

v Q) Cos(aw,t +0)
1 Balancad { A Squnrc: BPE VAN F_ne‘quency
Madulator law device divider +2
'T Comm,

Cos gt channel

[ VAQ) '
Synchronous| *o \
)‘ delector e 7 V(1)

Figure 20 : A PSK system where b(t) = + 1

A PSK system is show
{@pt+ 0). The detection |
nevessary which is gene

hin figure 20. The received signal is + A Cos
§ synchronous, hence a synchronous

local carrier ®
rated in the Synchronising circuit,

[,
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5. QUADRATURE P'SK ‘ N
communication system 1S that transrr'ussm.n
. digital modulation the bandwidth is
power and the channel t;‘am}\\ ldt:;;lg:: o f e i, o of Mo bt
spends on the bit rate b 1o 1€ . ,
ggiﬁg;‘ ;:3 ‘él symbol rZsults in bit rate .1s reduced. Tﬁms‘[;at:g ,,g;%ﬁef;?t }(:f
the carrier neg\‘!n\i also reduced, results in re'du.ces t le. g ath o IE
channel. The QPFSK is the one such a system, it 15 exp ams:h asthis ds,
QPSK two successive bits in data sequence are grouped together, reduces
the bit rate as well as channel bandwidth.

In BPSK, when the symbol changes the level, the phase of the carrier is
changed by 180° because, there were only two symbols. However in QPSK,
o successive bits are combined, there are four distinct symbols. When the
symbol is changed to next symbol, then the phase of the carrier is charged
by 45° refer Table 1.

In this case two binary PSK systems are used. The first PSK system having
a carrier frequency of Cos (0ot+ 8) and second one is quadrature phase with
first system. i.e. Sin(wot+ 6p). These two systems operate independently as

The prime requitement O the

mo
long as  is an integral multiple of half the bit rate o, = ("..)_b) where
m = 1,2, ...by combining the two into a single equivalent system result in

which tl-1e bit rate is doubled over the channel (on the same carrier). Such a
system 1s named as “quadrature PSK or QPSK” shown in figure 21.

Modulato
Source 1 4 Detector 1

iACarrier ﬂ e White §)®\ Correlator _l}ﬁ_D_x_
Cos(w,t +6) I .%v noise ; 1
FSN. Sarsk(t) ¥ °  Carrier
(-/2) ) ﬁ _é‘ﬁ- —_ PéN Cos(mot +9)
Channel
Source 2 S

+A “
' : ——
Correl D,
Modulator 2 rr; ator |2

Detector 2

Figure 21 ; Qpsk S
- ; ystem
¢ output of modulator 1 - % A Cos (wpt+ @
The output of modulator 2 0 ”

—
—

A Sin ((.l)ot-l- 90)
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ion of QPSK
,--(fener-lhl‘“ of QP! .
| { Dinary sequence is first converted tO; l?(;p01gr NRz
|l L} L . e
: The de r divides S(t

1 it is denoted by S(1) refer figure 23. The dtmul“Ple’r‘&mbered bi(ts) é“to
’.ﬂhn‘ .t » bit streams of the odd numbered bt?(” and even b e(t)
R duration of both of these odd and even numbereq

\ symbol consists of two bits.

vln this case the inj

sequences. The ﬁ}mhnl
sequences 18 2Ty, hence eacl

Modulator 1

. » X |
S . l
W,._...I___ \Tf JPs sin 2w f.t

PSK
Binary Hepola S1) Q
N NRZ » Demultiplexer Adder "'—)'—
input encoder \/ES— cos 27 fct Signal

Se(t)

Modulator 2

Figure 23: Generation of QPSK

It may be observed that, the first even bit occurs after the first odd bit, hence
even numbered sequence S,(t) starts with the delay of one bit period Ty. This
delay is known as offset. Hence is named as offset QPSK and it ensures the

cl;\angc in level of S,(t) and Se(t) cannot occur at the same time due to this
offset.

Thus the output of modulator 1 = S,(t)\/-lg Sin 2nf.t = Si(t)

and the output of modulator 2 = Sy(t) \/f’; cos 2nf. t = Sy(t)

the value of S.(t) and Selt) are +1 and -1 respectively

adder is SQP;sK (t) = S;(t) + Sz(t)

Sark(t) = S.(t) /P sin 2nft + So(t) JPs cos 2nf t
Figure 23 shows ‘ |
Jure 23 5 the QPSK signal re r

‘ . ) : esent

phase change, j Occurs at mip;j ; iy
offset. i

The output of the

(1)

- quation (1). If there is any
uration of T, due to the effect of
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Reception of QPSK

The figure shows the reception of coherent QPSK.

T C,(t Inph hannel

| Idt 0, Decision | PPhase channe
device
Received I RG] 0 P Output
eeen Threshold =0 Multiplexerf—>— l’u 5

= Threshold = | Pl LY
Sigral 1) 50 v sequence

T Ca(t) _j

jdt > Decision

- device | Quadrature channel

Figure 23(a)

The QPSK receiver consists of a pair of correlators with a common input and
supplied with a locally generated carrier signals ¢,(t) and &, t). The correlator
outputs C;(t) and Cy(t) are produced in response to the received signal r(t)
are each compared with a threshold value. If Ci(t) > 0, a decision in made
a symbol 1 for the inphase channel output, but if Cy(t) < 0, a decision is made
symbol 0 for the inphase channel. Similarly if x, > 0, a decision is made,
symbol 1 for the quadrature channel output

and x; < 0, a decision is made,
symbol 0 for quadrature channel output is obtained. Finally, these two outputs

are combined in a multiplexer to reproduce the original binary sequence at

the transmitter input with the minimum probability of error in an AWGN
channel. 1
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9. DIFFERENTIAL PSK (DPSK)

O In a PSK system, although it is quite feasible to obtain a fixed phase
recovered carrier, it is difficult to obtain the required absolute phase. The
receiver must be given some indication of the proper phase reference
since it is relatively easy for carrier recovery from the desired phase

difference.

© Moreover the advantages of coherent PSK have been obtained at the cost
of synchronous detection. Non coherent detection cannot be used because
the information resides in phase. This difficulty is overcome in DPSK

scheme.

O In this scheme, the information is encoded interms of phase changes
between adjacent symbols, rather than an absolute phase for each symbol.
Differential encoding of a message sequence is illustrated in table 3.

O An arbitrary reference binary digit is assumed for the initial digit of the
encoded sequence. In the example shown in table 3 a ‘1’ has been chosen.

For each digit of the encoded sequence, the present digit is used as a
reference for the following digit in the sequence.

O A ‘0’ in the message sequence is encoded as a transition from the state
of the reference digit to the opposite state in the encoded message sequence,
‘" is encoded as no change of state. In the example shown, the first digit
in the message sequence is al, so no change in state is made in the
encoded sequence and ‘1’ appears as the next digit in the encoded sequence.
This serves as the reference for the next digit to be encoded.
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s ——AToy
O Since the next digit appearing in the message sequence is ‘0°, the ey
encoded digit 1s the opposite of the reference digit, or a *0’. The encodeg
message sequence then phase shift keys a carrier with the phase ‘(¢ ang

‘w’ as shown in the table 3.

e ———————— A ————

Table 3 Differential Encoding Example

Message sequence 1 0 0 '1 1 1 0 0 g

Encoded sequence 1 1 0 1 1 1 1 0 1 0
’ Reference digit_J

Transmitted phase 0 0 =« 0 0 0 0 n~ 0 =

The block diagram shown in figure 24 illustrates the generation of DPSK
The equivalence gate, which is the negation of an Exclusive - OR, is a logic
circuit that p2=‘-.uns the operations listed in table. By a simple level shift a
the output of the iugi- rircuit, so that the encoded message is bi-polar, the

DPSK signal is produced by multiplication by the carrier, or double side band
modulation.

A possible implementation of a differentially coherent demodulator for DPSK
is shown in figure 24. The received signal plus noise is correlated bit by bil

with a one-bit delayed version of the signal plus noise. The output of th
correlator is then com

_ pared with a threshold set at zero, a decision bein
made in favour of ‘|’

le 1 or ‘0°, depending on whether the correlator output 8
positive (or) negative respectively.

-

Message Equival

+1
sequence gate | l:h‘;;l \@ + A Cos wcT

One bit A Cos u)CT
Delay

Figure 24 : Block diagram of a DPSK modulator

;\?ilxu:g:’tlz t;i:'t th? "etﬁd:eglsequence will be correctly demodulated con-‘»ideI
en In the table 4. Assuming no nojse ; r the
) ; is present. After the
two bits have been received (the reference bit plus the Ff)irst encoded bit)
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signal input to the correlator is S, = A Cos wct and the reference, or delayed,
input is R; = A Cos wct.

Table 4 : Truth table for the equivalence operation

-Input 1 (Message) Input 2 (Reference) Output
0 0 1
0 1 0
1 0 0
1 1 1
Received Multiplier - ecision
. ot —30 Threshold —
Signal J‘( )dt |
lo
One bit LPF
Delay

Figure 24(a) : Demodulation of DPSK

The output of the correlator is V, = _[Az Cos’ w tdt - ‘1"A2T (1)
- 5 i

and the decision is that 1 was transmit

a;e S2 = -A Cos wct and R, =5,
0

ted. For the next bit interval, the input
= A Cos wt, resulting in a correlator output

Ty
V, = j(-A2 Cos’ wot)dt — _ 1
0

Scanned by CamScanner



BATIRNY SN 'x'\_\!\\\\lu'lmt‘nj W ANT RN WL m s W - — —F "

’E-’ia\ PERFORMANCE COMPARISON OF DIGITAL MODULATIq,
\ SCHEMES

Bandwidth requirements: For high speed data transmission over a nqj,
bandpass channel VSB modulation with baseband signal shaping is bets,,
than ASK, FSK and PSK schemes for efficient bandwidth utilizatig,
The BW of USB scheme is = . The BW of ASK and PSK = 27v  for Fg;
BW ¢ 2¥,. Thus if bandwidth is of primary factor, FSK is not used,

1o I power requirement are most important, then coherent PSK or DS
18 most desirable while ASK are least desirable.

Wl Ifequipment complexity is a limiting factor, then non conerent demodulatio
schemes are preferable to coherent schemes.
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11. SYNCHRONIZATION TECHNIQUES

The synchronization is process used in a communication system to retrieye

original message data effectively from the modulated signal.

When one or more signals are transmitted through the common channe]

using multiplexing technique, proper synchronization is required to detect
the proper signal at the receiver. There are two basic modes of synchronization,

a. Carrier synchronization

If coherent detection is used in a receiver, then the knowledge of both the
frequency and phase of the carrier is needed to recover the original message
or data. The computation of frequency and phase of the carrier is called as

carrier synchronization.

b. Symbol synchronization

If noncoherent detection is used to recover the message or data from the
receiver it has to know the time at which the modulation can change its
state. The computation of these times is called as symbol synchronization.

@2. CARRIER SYNCHRONIZATION

One method of obtaining a carrier synchronization is to use the Costas detectors
and shown in figure 0. It consists of two coherent or synchronous detectors.
One detector is supplied with binary PSK and a locally generated carrier
which is inphase with the transmitted carrier. This detector is known as “In
phase coherent detector or I channel”.

The other detector is feu with binary PSK and a locally generated carrier which
is in quadrature phase with the transmitted carrier. This is known as “Quadrature
phase coherent detector or Q-Channel“. These two detectors are coupled
together through VCO to form a negative feedback system designed in such?
way to maintain the local oscillator to synchronise with the carrier.

Operation

? f\ssume the phase of local oscillator signal to be same as that of carrie!
ie., !ocal oscillator carrier signal is properly synchronised with transmitting
carrier.

#® In this case I channel output contains the desired demodulated sig"®
whereas Q - channel output is zero due to the quadrature null effect ©
Q - channel.
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Phase Comparator

| Product h
Modulator [— - LPE I - Channel Outpt;t
: ' =l
Cos(a.t + ) [¢ ‘

B ’ Phase
B;}’;fg}.__ I-’Z?\OI Vo discriminator
signal 1 y

Jin(w t + @)
, \E_l-‘;s- Cosa,t 5 ;
> roduct Q - Channel
: Modulator > LPF
Phase comparator
Figure 26 : Costas PLL Detector .

® Suppose there is some Phase shift ‘¢’ between local oscillator carrier and

the transmitting carrier then ‘I’ channel ouftput will remain in the same
value but Q - channel output contains some signal which is proportional
to sin ¢.

This Q - channel output will have same polarity as the I - channel
output for one direction of local oscillator phase shift and opposite polarity
for opposite direction of local oscillator phase shift.

Thus combining the I and Q channel outputs in phase discrimination a
dc signal is obtained that automatically corrects the phase exj_rqrs_‘_in__\_
VCO. 1t is apparent that phase control in the costas detector ceases with
modulation and that phase lock has to be re-established. This is not a
serious problem when receiving voice transnﬁ.s‘s_i‘oq bec.ause the l_ock up
process normally occurs so rapidly that no distortion is perceptible.

. . 2E
The input to costas loop is binary PSK = Ee ot

E
The output of I channel = -:;- J-—zr—r— Cos ($-96)

1 [2E .
The output of Q channe! = 37 S (¢-06)
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iscrimi = - of I channel)
ut of the phase discriminator = (output of
T J (Output of Q channel)

_ 1 (."T_L] Cos ($—0) sin (p—0)

4
. E Sin 2(¢""6) _ E sin (¢_9)
2T 2 4T

If there is any phase difference between the VCO and the input carrier
frequency then phase difference (¢ - 0) is changed proportionally. The change
in (¢ - 0) causes the output of phase discriminator to increase or decrease

VCO frequency such that the synchronization is achieved.
Y és. SYMBOL OR TIMING SYNCHRONIZATION

The symbol synchronization is obtained by transmitting a clock along with

the message or data signal in multiplied

form. At the receiver, the clock is
extracted by appropriate filtering of the modulated waveform. Such as approach

minimizes the time required for clock

——

method is that, a fraction of the transmij (

recovery. The main draw back of this
ower is needs to allocated to

the transmission of the clock. To avoid this problem matched | filters are used

at the receiver. The figure 27 shows
synchronization. We know that the matche

the early late gate type symbol
d filters in maximum at the sampling

time.
‘_.-’
Matched Absolute
filter value
3 calculator
| Advance Output
by AT : _
- P ymbol wave ) 4
Input 5o form generator VOO [« LPiE —(—QE)—P
elay
message
or data oy AT
)
.| Matched Absolute
filter value
|__calculator
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this case the error signal is generated by taking the difference between the
olite valies of the two m atched filler outputs for a given off set @ T)
ween the actual transmission times t(KT) and this local estimates ¢ (KT),
erwise, it is linearly proportional to ‘o’ respective of the polarity. If there

rror, it is low pass filtered and then applied to a VCO that controls
ging and discharging instants of matched filters. The instantaneous
of the local clock is advanced or retarded in an iterative manner

| the equalization is reached, thus symbol synchronization is obtained.)

.
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(; DEFINITIONS OF SPREAD SPECTLUM

® OSpread spectrum is a modulation technique whereby a modulated waveform
is modulated second time in such a way so as to generate an expanded
bandwidth (wideband) signal, that does not significantly interfere with
other signals. Bandwidth expansion is achieved by a second modulation
and it is independent of message or information transmitted.
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5.2 SPREAD SPECTRUMAND MULTIPLEACCESS TECHNIQUES

T —

# It also can be defined as, spread spectrum is a technique in which 3
Pseudo noise code, independent of the information data, is employed ag
a modulation waveform to spread the signal energy over the bandwidth
much greater than the signal information bandwidth. At the receiver the
signal is despread using a synchronised replica of the Pseudo noise code.

® Spread spectrum means spreading the bandwidth of the signal to be
transmitted than the minimum bandwidth necessary to transmit it. It is
achieved by second time modulating the modulated signal using Pseudo
noise code as carrier signal. The same Pseudo noise carrier is used at the
receiver to despread (demodulate) the signal. As a result of this, it is able
to reject the interference caused by other user either intentionally or
unintentionally.

# The spread spectrum signals used for the transmission of digital information
are distinguished by the characteristic that their bandwidth ‘W’ is greater
than the information rate R bits/sec. i.e., the bandwidth expansion factor

[Bc =_\l:i) for a spread spectrum signal is much greater than unity. The

large redundancy inherent in spread spectrum signals is required to overcome

the interference encounted over some radio and satellite channels. It is

achieved by using suitable coding techniques, thus that coding is the
’ important element in the design of spread spectrum modulation.

#® A second important element employed in the design of spread spectrum
signal is pseudo-randomness, it makes the signals appear similar to random
noise and difficult to demodulate the receivers other than intended ones.

Uses of spread spectrum communication

i. Suppressing the determined effects due to jamming, interference arising
from other users of the channel, and self interference due to multipath
propagation.

ii. Achieving message privacy in the presence of other listeners.

iii. Hiding a signal by transmitting it at low power, and thus making it
“difficult for a unintended receiver to detect in the presence of noise.
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 SPREAD SPECTRUMAND MULTIPLE ACCESS TECHNIQUES 5.3

Advantages of spread spectrum modulation

i. Improved interference rejection

ii. Code division multiplexing for CMpA application
iii. Low density power Spectra for signal hiding
iv. High resolution ranging

v. Secure communications.

vi. Antijam capability

vii. Increased capacity and spectral efﬁciency in mobile ¢
viii. Lower cost of implementation

ix Readily available IC components.

Applications of spread spectrum
a). Military communication systems
It has two functions

i) It allows a transmitter to transmit message to a receiver without the
message being detected by unauthorised receivers.

ii) To achieve this the spread spectrum modulation decreases the transmitted
power spectral density to an unauthorised receiver,

b). In commercial communication system, the spread spectrum signals are
transmitted over an already existing microwave signal, with the same
carrier frequency, resulting in which additional signals can be transmitted
over the same band thereby increasing the number of users.

c). It is used in satellite communication and local area networks.

d). Multiple access communications in which a number of independent users
are required to share a common channel without external synchronization

mechanism. Example : ground based mobile radio environment involving
mobile vehicle that must communicate with a central station.

_The spread spectrum techniques are classified as follows

_ L _ S~ o~ o~ o n

Scanned by CamScanner



£ SPREAD SPECTRUMAND MULTIPLEACCESS TECHNIQUES
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' 5@ PRINCIPLE OF DIRECT SEQUENCE SPREAD SPECTRUM (DsSss) |
L—'Input | :
Binary data d, with symbol rate Rg = 1/Ts (=bit rate Ry, for BPSK)
Pseudo - noise code PN, with chip rate R¢c = 1/T¢ (an integer of Rg)

The data sequence represented by d, is converted to bipolar NRZ wave form
d(t) such as follows

if dg=1 then b(t) = 1 ,

and dx=0 then b(t) = -1
Spreading AN Despreading
d() ~m( | T_ym m(t) Bupd?
Lf;l:: : Modulator | Channel Demodulator |i— received
R y(t) —! data
C1(0) C’g é c,®
RF carrier RF carrier
PN PN
code code |
baseband bandpass " baseband
Figure 6

Similarly the PN sequence C(t) is represented as Cx = 1 then C(t) = 1
and Cg = 0 then C(t) = -1.
Modulation (Spreading)

In the transmitter the binary data d, or d(t) (for BPSK, I and Q for QPSK) is
directly multiplied with the PN sequence C(t) which is independent of the
binary data, to produce the transmitted baseband signal M(t).

M(t) = d(t) C(t)
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| -!".-AWPECTRUMAND MULTIPLEACCESS TECHNIQUES 5.13
Spreading Despreading
d(t) m(t)
anul . m(t) . dr _Qutput
ata % data
| C1(0 Channel
| CAt)
| PN -
| code o N ]
: code ;
i —
Ts(symbol) 1Ts
“— >
- JVV\/
du) >t 3
R _RS RS L
Te(chip)
; o
| i W i e
C(t) >t \_(_\-;—-_,f
Re
T - i
——>
! NC-TC
Te(chip)
Ay P B (S
C(t) & ~— 1 >,
_..RC R(_‘ £
et -
et
Figure 7 : DSSS (Spreading)
- The effect of multiplication of d; with a PN sequence is to spread the base
e bt didth Rg of d:i to a baseband bagdwidth of Re¢ refer figure 7.
uw




. S - SPREAD SPECTRUMAND MULTIPLEACCESS TECHN'OUES"" |
: . \ i
Demodulation (Despreading) o
The spread spectrum signal cannot be detected by a conventional narrowbapg
receiver. In the receiver, the received base band signal m(t) is multiplieq With
the PN sequence C(t)
Spreading Despreading
d(t t) = C(t) d(t
| - ®) 3 m(t) = C(t) d(t) m) d(t Output
data Channel data
| [ & CAt)
| PN PN |
! L code | code
\ i
+] T ‘I P Tc
m(t) >t \/’_Mf
L R Re
]
«—>
Ne.Te
T
TAr
| C(t) >t e N ¢
J | “Re Re
-1 L]
“—>
Ne.Te
T
T ?
——>
+1
d(t) >t Sf
| "'RS Rs

Figure 8 : DSSS (Despreading)
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6PREAD SPECTRUMAND MULTIPLEACCESS TECHNIQUES
—_—

the spread spectrum signal M(

= t of multiplication of
t) with the PN sequen
ansmitter is to despread the

, ce Cr(t) used in the
bandwidth of M(t) to Rg refer figure 8.

To simplify the description of modulation
spectrum system is considered for baseband
filtering) over an ideal channel].

Demodulation

In other words, the demodulation can be explained as follows

To demodulate, the received signal is multiplied by C.(t) this is the same PN
sequence as PN, = Cy(t) (the Pseudo-noise code used in the transmitter),
synchronized to the PN sequence in the received signal C(t),. This operation

is called (spectrum) despreading, since the effect is to undo the spreading
operation at the transmitter.

The multiplier output in the receiver is then Cr(t) = Ci(t) = C(t)
dr = C(t) m(t) = C(t) [C(t) . d(b)]

The PN sequence Cr(t) alternates between the levels - 1 and +1, in the
¢xample:

Cil) =+1+141-14+1-1-1

The alternation is destroyed when the PN sequence Cr(t) is multiplied with
Itse]f (perfectly synchronised), because

Cr(t) . C(t) =+ 1 forallt
Thug dutocorrelation R, (t = 0) = average (Cr(t) . C(t) = +1
¢ data signal is reproduced at the multiplier output

(data received) d, = d; (data transmitted)
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SPREAD SPECTRUMAND MULTIPLEACCESS TECHNIQUES |
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5.16

If the PN sequence at the receiver is not synchronized properly to the receiveq
signal, the data cannot be recoverd.

If C(t) of transmitter # C(t) of receiver

If the received signal is multiplied by a PN sequence C(t), different from the
one used in the modulator, the multiplier output becomes

d(t) = m(t) C(t) [d(t) . C2(B] Cilt)

In the receiver, detection of the desired signal is achieved by correlation
against a local reference PN sequence. For secure communications in a multi-
user environment, the transmitted data d; may not be recovered by a user
that doesn’t know the PN sequence Cr(t) used at the transmitter. Therefore

Crosscorrelation Re(t) = average Cr(t) C(t) << 1 for all ¢

is required. This orthogonal property of the allocated spreading codes, means
that the correlator used in the receiver is approximately zero for alll except
the desired transmissi@

e _—_— W A TRAT FPIw T e e —
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é FREQUENCY HOPPING SPREAD SPECTRUM

& Fn DS-.SS system the use of PN sequence is to modulate a PSK signal and
i ?c.:hleves Instantaneous spreading of the transmission bandwidth. The
ability of such a system to suppress the effects of jamming or interfering

is determined by the processing gain of the system, which is a function
of the PN sequence length.

|
|
|

¢ The processing gain can be made larger by employing a PN sequence
with narrow chip duration, which inturn permits a greater bandwidth

| and more chips per bit. But, the capabilities of physical devices used to
generate the PN sequence imposes practical limitation on the processing

gain. Hence attaining the larger processing gain is practically impossible.

To over come this problem frequency hop spread spectrum technique 1s

! used.

# In a frequency hopped spread spectrum system the available channel

bandwidth is divided into a large number of continuous frequency slots.
ansmitted signal occupies one or more of the

the selection of the frequency slots in each
seudo randomly according to the output

In any signalling the tr
available frequency slots,
signalling interval is made P
from PN generator.

s not cover the entire spread spectrum
led to consider the rate at which the hops

quency hopping.

% The frequency hopping doe
instantaneously, hence we ar¢
occur. There are two types of fre
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SPREAD SPEC \ES

5.28
Information
sequence
FSK 0

FSK : . utpy

—Lt E"mder{modulator > Mixerf—>{ Channelf—>{Mixer[—] Demodulator E’ put
) A » / :
PN sequence| | Frequency Frequency ';"lm:
generator | | synthesizer synthesizer yn
A
T
PN sequence
generator

Figure 14 : Block diagram of FH spread spectrum system -

A block diagram of the transmitter and receiver for a frequency hopped
spread spectrum system is shown in figure 14. The modulation is usually
either by binary or ‘M’ ary FSK. Suppose, the binary FSK is employed the
modulator selects one of the two frequencies corresponding to the transmission
of ‘0’ or ‘I'. The resulting FSK signal is translated into frequency by an
amount that is determined by PN generator, which inturn is used to select
the frequency that is synthesized by the frequency synthesizer.

The output of frequency synthesizer and FSK modulator is mixed in this unit
and the resultant frequency translated signal is transmitted over the channel.

P For (example) ‘M’ bits obtained from PN generator may be used to specify
2M-1 possible frequency translation.

10. SLOW FREQUENCY HOPPING SS

In which. the symbol rate Rg of ‘M’ ary FSK signal is an integral of the hop.
rate Ry. i.e., several symbols are transmitted on each frequency hop. Each

symbol of slow R, R, and Rc for slow frequency hopping that
Rg = Re = —I:(L 2 Rh

where Ry, = bit rate of incoming binary data
K = log, M.

At t.he reFeiver, the PN sequence are identical and synchronised with the
received signal, which is used to contro] the output of the frequency synthesizer
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On a sglgle hop, the bandwidth of the trans
of conventional ‘M’ ary FSK signals. How
frequency hops the FH-M FSK s

mitted signal is the same as that
ever, for a complete range of 2K

than_r . r of several GHz which is very much larger

Let K successive bits of input data sequence represent 2K =

| hoi is nothing but frequency slot. The rate of change-of frequency slot or hop
| Is known as hop rate Ry The rate at which ‘K’ bit symbols of data input
séquences are generated are called as symbol rate Rs.

M symbols frequency

(The frequency hopping rate R, may be equal to symbol rate or lower or

higher than the symbol rate. If R, is equal to or lower than the symbol .ate
then the FH system is named as “slow hopping FHSS”.

g

(:If R_h is higher than symbol rate then the FH systems are named as “fast
hopping FHSS”.

An individual FH/FSK signal of short duration is refened to as a chip. The
chip rate Rc for an FH/FSK SS is Rc = max (R;, Rg).

At each hop FSK signals are separated in frequency by an integer multiple
of chip rate Rc = Re. This condition ensures that any transmitted symbol will
not produce any crosstalk in it. But the performance of slow FHSS system is
same as that of non cohorent detection of conventional MFSK signal in AWGN.
Thus the interfering signal has an effect on the FH/MFSK receiver interms of
| average probability of symbol error.
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If the jammer spread its average power ‘)’ over the entire frequency hOPped
spectrum, the jammer’s effect is equivalent to an AWGN with power Spectra]

. J :
density % where N; = W and W¢ bandwidth of FHSS signal.
C

: : : E P/)
Energy to noise density ratio —

N, W./R,
we know P/J is the reciprocal of jamming margin.

W,
and processing gain PG = R_C = 9%
S

PG in db = 10log;y 2K = 10K log;e2 = 3K db.

K = length of PN sequence used.
11. FAST FREQUENCY HOPPING SS

In which the hop rate Ry, is an integer multiple of the M ary FSK signal rate

Rs. i.e., the carrier frequency will change or hop several times during transmission
of one symbol.

A fast FH/MFSK system differs from a slow FH/MFSK system is as follows.
In a fast FH/MFSK system, each hop is a chip. In general fast frequency
hoping is used to detect a smart jamming or interference signal. It has two
operations (i) measuring the spectral content of the transmitted signal, and
(ii) retuning of the interfering signal to that position of the frequency band.
To overcome the jamming, the transmitted signal must be hopped to a new

carrier frequency before the jamming is able to complete the processing of
these two functions.

For data recovery at the receiver, non coherent detection is used, but the

detection procedure is quite different from that used in slow FH /MFSK receiver:
In particular,

1. For each FH/MFSK symbol, separate decision are made on the ‘K’ frequency

hop chips received and a simple rule based on majority is used to make
and estimate of the dehopped MFSK signal.

Cep scted-
of the total signal received over ‘K’ chips and the larger one is sele

Fnction
2. For each FH/MFSK symbol likelihood functions are computed as mnctw)
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The codes used in practical applications are aiumost iuicar Louc.

;LC 11. BLOCK CODES

Block codes also known as “arithmetic codes”, in which each block of K'
message 1S encoded into a block of ‘n' bits. (n > k) as shown in figure 12.
The check bits are derived from the message bits and are added to them.
The n bit block of channel encoder output is called a “codeword” and the

codes in which the message bits appear at the beginning of a codeword are

called “systematic codes”.
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6.34
—
Message; Channel 3 Code
Blocks Encoder Blocks
Check
Message Message bits
K bits —j K bits r bits K+r=p
Figure 12

Parity check code: The simplest possible block code is when the number of
check bits is one. These are known as parity check codes. When the checkbit
is such that the total number of 1's in the codeword is even, it is known ag
"Even Parity Check" and when the check bit is such that the total number
of 1's in the codeword is odd, it is known as "odd parity check".

Message | Codeword for | even check Code for odd parity
parity message message checkbit
010011 010011 1 010011 0
101110 101110 0 101110 1

If a single error occurs in a received message it can be immediately detected,
although the erroneous bit cannot be determined. Thus with this code, though
a single error can be detected, it cannot be corrected.

Study of Binary code space

The “weight of a codeword” is defined as the numbers of non zero
components in it. For example:

Codeword Weight
010110 3
101000 2

The “Hamming distance”, between two codewords is defined as the number
of components in which they differ

Mathematically, the hamming distance can be defined as

Duv) = 2 (o ®B)
where u = a,ao

¥ = Bl’ [32 ................... [3“ (Where o and B’S are ‘0’ or 1)
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The notation ® means modulo - 2 addition for which the rules are
080 = o
01 = 1
10 = 1
11 = o

then ie. u = 1010 and vV = 0111 given.
Du, V(10 +0®1)+1@1)+0@1)] = [1+1+0+1] =3

The minimum d}stance of a block code is defined as the smallest distance
between any pair of codewords in the code.

Let us consider a block code of two digits with a minimum distance two.
Two code books are possible. The codes are 00, 01, 10, 11; code book values
are 01, 10.

Now, a data is received with single error, 01 may be received either as 00
or as 11. These values are not available in our codebook, hence an error
has been detected. But a decision cannot be taken as to whether 01 or 10
was transmitted, because both are at equal distance from 00 hence error
cannot be corrected.

If the codebook of minimum distance three the single error can be detected
as the distance of erroneous word is 1 from only one codeword, and more
than 1 from all other code words.

For example : if 000, 111 is our code book values. If 001 is received, a
decision can be taken that 000 is received since the distance between 000
and 001 is one. Whereas the distance between 111 and 001 is two.

Therefore the minimum hamming distance should be two to detect error,
and it should above two for correci errors.

Minimum distance Description of coding
1 Error cannot be detected
2 Single error detections
3 Single error detection and correction
4 Single error correction plus

double error correction

Double error correction

) ]

Double error correction
plus triple error detection

|
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‘errors can be corrécted and n/2 error can be detected if 'n' is ev}
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L M
GQ. CYCLIC CODES
Cyclic code is 2 subclass of linear block codes. An advantage of cyclic code
over other types of code is that they are easy (O encode. The cyclic codes

possess well defined mathematical structure, which has led to the development
of very effici hemes for them. There are two important reasons

ent decoding s¢
to use cyclic codes.
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mented by using

Encoding and syndrome calculations can be easily imple
simple shift registers with feedback connections.

i) the mathematical structure of these codes is such that it is possible to

design codes having useful error correcting propertles

A binary code is said to be a “cyclic code” if it exhibits two fundamental

properties.

a) Linearity : The sum of any two codewords in the code is also a codeword.
b) cyclic property : Any cycle shift of a code word in the code is also a

code word.
Property (a) restates that the cyclic code is a linear blockcode.
Property (b) in mathematic terms, let the ' tuple (Cy, Cp -« - C.)
is a code vector of 'C' The code is cyclic if the 'n’ tuples.

(Cy G = € i)

€. Cpan )

(C, s Cip oo Ciig)

(C; G, v Ty &)
i.e., shifting each code cyclically one place to the right.
0o 1

Example : the codes are 1011, 1101, 1110, 0111

:
1 0 1

obtained by a cyclic shift of

1 1 0  'ntuple 1011 (n = 4)
11 ]

— ﬁo*a—nﬂn—tqv—a

0 1 1

The code obtainea by rearranging the four words is also a cyclic code.

" The codeword 'C' can be represented by a code nomizl as

C(X)=C0+C1X+C2X2 .+ C X ™ ‘,,(1)

n-1

Where X = arbitrary real variable.

¥ . . 5 \
i n.;y-p.aj ~— TS AT TT T —'A



DATACOMMUNICATIONS e

: The i‘;ﬁif:meff_ltlsd of t'he polynomials are '0' and 1's and they belong
- toa y Held which satisfies the following rules of additions and

" multiplication.
0+0=0 0.0=0
0+1=1 0.1=0
1+0=1 1.0=0
14+1=0 L, 9=1

E:ach power of ‘xj 1n th.e polynomial (X) represents a one bit cyclic shift in
tur.le. HerTce multiplication of the polynomial C(X) by X is viewed as cyclic
shift, subject to the constant x* = 1. For a single cyclic shift, thus equation ~
(1) becomes

CX)=C_,+C, X +C, X2+ ...+ C,, D! and so on.

n-1
Generator polynomial
If g(x) is a polynomial of the degree (n — k) and is a factor of x" + 1, then

g(x) generates (n, k) cyclic code in which the code polynomial C(x) for a
data vector D = (d, d,, d, ... d; ) is generated by

C(X) = D(X) . g(X).
Consider ‘K’ polynomials g(X) xg(x), x*g(x) . . . x¥! g(x) which all have

degree n - 1 or less. For any linear combination of these polynomials of the
form C(X) = d, g(X) + d, X g(X) + ...+ d, X*' g(X) = D(X) g(Xx).

where C(X) is a polynomial of degree n - 1 or less and is a multiple of g(x).
There are 2¥ polynomials corresponding to 2¢ message data vectors.

~ The codeword corresponding to the 2K polynomials form a (n, k) linear code

and is also cyclic.

- Proof:
lLet C(X) = C0+ C!X * C2X2+ vt Cn—l Xt ol
fora singie cyclic shift
Cl(x) =l COX + C’lx2 + C2X3 + o F Cn-—2 X“-'l+cn-1 T z
S

XC(X) = C, X* + CX + CXhotCyy X

The Equation (2) and (3) are added by mod 2’ adder, thys
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,~:;:: - OX 4+ XC(X) =C, X"+ (C,,+ C.) X+ ..t (X, + X)) PP+ (X + P)X +C_,
C'X + X(X) = C,_ (X"+1) ' ’
[Since inoth bits are same then the result is zero in mod 2 addition].
Since there is no differer;ce in mod ‘2’ addition and subtraction we get.
=C,_, (Xn+ 1)+ (C+ CX + v * C, X"
= C,, (X"+1)+C"(X)

where C(X) is a cyclic shift of C(X). Since XC(X) and X"+1 are both div1.sib1e
by g(x). Thus C(X) is a multiple of g(X) and can be expressed as a linear
combination of g(X), Xg(X), X’g(X) - . . XK1 g(X). i.e., C®(X) is also a code
polynomial.

The generator polynomial g(x) of a cyclic code can be written into a systematic
form such as follows.

Coy= Fo P PPy do oG )
n-K Pﬂ“l‘;d_ﬂck bit *K' message bn
where P(X) = P+P X+P X+..... B KR

= parity check polynomial for the message signal D(X)
= remainder from dividing X*¥ D(X) by g(x)

e, Xk D(X) = q(x)g(x) + P(x) V)

where P(X) and q(X) are the remainder and quotient respectively thus the
code polynomial is written as

C(x) = P(x) + X"~ *D(x) )
Encoder for Cyclic code

The block diagram representation of cyclic codes are shown in figure. The
encoding is described by the equation 1, 2 and 3 involve the division of
X** D(X) by the generator polynomial g(x) to calculate the parity check

polynomial P(x). It can be obtained by using the dividing circuit consisting
of a feedback shift register as shown in figure 15.

The hardware required to implement this encoder are,

(i) An (n - K) bit shift register.
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(ﬁ) Maximum of (n - K) mod 2 adder.
(iii) AND gate as a switch.

Symbols used are - | p

ol

@
—>_,g

flipflop

module 2 adder;

1 provide closed path

]

= 0 provide open path

O O -
N
\/ -~
Remainder 8
Input message data D(X)
Figure 15 : Encoder for cyclic code
Operation

i When the switch ‘S’ is switched ON and the switch S, is in position 1
all the shift registers are initialized to zero state. Now the message data
(d, d,. . .d.,) are shifted into the register and simultaneously into the
communication channel.

As soon as the ‘K’ information digits have been shifted into the register,
the register contains (n — K) parity check bits (P, P,. .. P _, ).

ii. When the switch S, is tuned OFF, and the switch S, is in position ‘2’
now the contents of the shift register are shifted into the channel. Thus
the code word (P, P, P,... P, _, ,d;d d,...d._ ) is generated and
sent over the channel.

This encoder is much simpler than the encoder needed for implementing
(n, K) linear block codes, where positions of the ‘G’ and 'H’ matrix

have to be stored.
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= - Syndrome calculation

Let  C(x)= codeword transmitted over the noisy channel.-
R= Received vector, it may not be any One of 2% valid code

If the syndrome is zero, the received vector is divisible by the generator
polynomial thus it is valid code then the decoder accepts the received vector
as the transmitted code vector.

If syndrome is not zero then the-‘ransmission error have occurred. The
syndrome ‘S’ of the received code R(X) is the remainder resulting from
dividing R(X) by g(X).

: R(X) S(X)
.e., 22— QX) + —— o |
it g(X) i g(X)
where ‘ Q(X) = Quotient of the division
R(X) = C(X) + E(X) s i 2

E(X) = Error caused by the channel.

R(X) _ C(X) + E(X) _ C(X) i E(X) - C(X) + E(X) 3
g(X) g(X) g(X) g(X) g(X)

we know C(X) = D(X).g(X) hence from equation (1) and (3) we get

thus

E(X) S(X)
C(X — 2 = QX =
hence (X) 2X) Q(X) + 2X)
el E(X) B C(X) + Q(X) + -2-%3— or E(X) = [C(X) +Q(X)] 8(X)+S(X)

8(X)
[note : All addition are mod ‘2’ addition operation]

Hence the syndrome of R(X) is equal to the remainder resulting from dividing
the error pattern by the generator polynomial and the syndrome contains
information about the error pattern that can be used for error correction.

\SI

Received @ @ g Bokc 2
data R(x) 1 SX)
Sy ° S —> T [ Spx __.\’0

Figure 16 : Syndrome decoding of cyclic code
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P il

gteps 0 be followed

i First of all,. the registers are initialised. Then the switch S, switched ON
and S, switched OFF, now the received vector R(X) entered into the

shift register, after the entire received code is entered into the register,
the content of the register will be syndrome.

i. Now switch S, is opened and S, is closed, thus the contents of shift

registers are shifted out and the register is ready for processing the next
received vector.

Once the syndrome is calculated, then an error pattern is detected for that
particular syndrome. When this error vector is added to the received vector
‘Y’ then it gives corrected code vector at the output.

Feedback connection
+ +
4
.| Syndrome register / syndrome
g calculator
L | .,
Error pattern detector ~ ;J
S : Soul
ey Buffer register o )ngr_ric ted
. code word
Received code R(X)
Figure 17
Operation

L Initially switches S, are closed and S, are opened, thus the bits of. the
Teceived vector ‘R’ shifted into buffer register as well as they are shifted

into the syndrome calculator.

i After the syndrome for the received vector is calculated and is pléced
in the syndrome register itself. Now the contents of the syndrome reglsfef
is read by error detector. The detector output is 1 if and only if the
syndrome in the syndrome register corresponds to a correctable error
Pattern. With an error the highest order position (X") and so on. The
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decoder operates on the received code digit by digit until the entire received
code is shifted out of the buffer.

The switch 5, are opened and S;; are closed, now the shifts are applied
to the flipflops of buffer register, error register and syndrome register.
The error pattern is then added digit by digit to the received code, if

the syndrome register contains all zeros then the output is error free
code word, otherwise the output is erroneous.

Advantages
i. Error correction and detection is very simple and easy to implement.
ii. It avoids the storage of matrix ‘G’ and ‘H’ or look up table decoding.
iii. Encoder and decoder are simple to implement.

Disadvantages

i. Error detector circuit is complex to implement)
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