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UNIT I
ELECTROSTATICS
ELECTROSTATICS :

Study of Electricity in which electric charges are static i.e. not moving, is called electrostatics ® STATIC CLING ¢ An
electrical phenomenon that accompanies dry weather, causes these pieces of papers to stick to one
another and to the plastic comb. e Due to this reason our clothes stick to our body. ¢ ELECTRIC
CHARGE : Electric charge is characteristic developed in particle of material due to which it exert force
on other such particles. It automatically accompanies the particle wherever it goes. ® Charge cannot
exist without material carrying it e It is possible to develop the charge by rubbing two solids having
friction. e Carrying the charges is called electrification. e Electrification due to friction is called
frictional electricity. Since these charges are not flowing it is also called static electricity. There are
two types of charges. +ve and —ve. ® Similar charges repel each other, ® Opposite charges attract
each other. e Benjamin Franklin made this nomenclature of charges being +ve and —ve for
mathematical calculations because adding them together cancel each other. ® Any particle has vast
amount of charges. * The number of positive and negative charges are equal, hence matter is
basically neutral. ¢ Inequality of charges give the material a net charge which is equal to the
difference of the two type of charges.

Electrostatic series :If two substances are rubbed together the former in series acquires the positive
charge and later, the —ve. (i) Glass (ii) Flannel (iii) Wool (iv) Silk (v) Hard Metal (vi) Hard rubber (vii)
Sealing wax (viii) Resin (ix) Sulphur Electron theory of Electrification ® Nucleus of atom is positively
charged.  The electron revolving around it is negatively charged.  They are equal in numbers,
hence atom is electrically neutral. ® With friction there is transfer of electrons, hence net charge is
developed in the particles. ¢ It also explains that the charges are compulsorily developed in pairs
equally . +vein one body and —ve in second. e It establish conservation of charges in the universe. o
The loss of electrons develops +ve charge. While excess of electrons develop —ve charge ¢ A proton
is 1837 times heavier than electron hence it cannot be transferred. Transferring lighter electron is
easier. * Therefore for electrification of matter, only electrons are active and responsible. Charge
and Mass relation e Charge cannot exist without matter. « One carrier of charge is electron which
has mass as well. « Hence if there is charge transfer, mass is also transferred. ¢ Logically, negatively
charged body is heavier then positively charged body. Conductors, Insulators and Semiconductors
Conductors : Material in which electrons can move easily and freely. Ex. Metals, Tap water, human
body. Brass rod in our hand, if charged by rubbing the charge will move easily to earth. Hence Brass
is a conductor. The flow of this excess charge is called discharging e Insulator : Material in which
charge cannot move freely. Ex . Glass, pure water, plastic etc.

[t has been found experimentally that in classical electrostatics the interaction between
stationary, electrically charged bodies can be described in terms of a mechanical force.
Let us consider the simple case described by Figure 1.1 on page 3. Let F denote the
force acting on a electrically charged particle with charge g located at x, due to the
presence of a charge ¢ located at x'. According to Coulomb s law this force 1s, In
vacuum, given by the expression
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FiGurge 1.1:  Coulomb’s law describes how a static electric charge g, located at
a point x relative to the origin O, experiences an electrostatic force from a static
electric charge g* located at x'.

1.1.2 The electrostatic field

Instead of describing the electrostatic interaction in terms of a *force action at a dis-
tance’, it tums out that it 1s for most purposes more useful to introduce the concept of
a field and to describe the electrostatic interaction in terms of a static vectorial electric
field E¥* defined by the limiting process

B £ lim & (1.2)
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where F is the electrostatic force, as defined in Equation (1.1) on the preceding page,
from a net electric charge g’ on the test particle with a small electric net electric charge
g. Since the purpose of the limiting process 1s to assure that the test charge g does not
distort the field set up by ¢, the expression for ES does not depend explicitly on g
but only on the charge ¢ and the relative radius vector x — x'. This means that we can
say that any net electric charge produces an electric field in the space that surrounds
it, regardless of the existence of a second charge anywhere in this space.’



Using (1.1) and Equation (1.2) on the preceding page, and Formula {F.70) on
page 160, we find that the electrostatic field E*® at the field point x (also known as
the observation point), due to a field-producing electric charge ¢* at the source paint
X', 1s given by
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In the presence of several field producing discrete electric charges g;, located at
the points x;, i = 1.2, 3, ..., respectively, in an otherwise empty space, the assumption
of linearity of vacuum® allows us to superimpose their individual electrostatic fields
into a total electrostatic field

S (1.4)
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If the discrete electric charges are small and numerous enough, we introduce the
electric charge density p, measured in C/m’ in SI units, located at x* within a volume
I of limited extent and replace summation with integration over this volume. This
allows us to describe the total field as
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where we used Formula (F.70) on page 160 and the fact that p(x") does not depend on
the unprimed (field point) coordinates on which V operates.
We emphasise that under the assumption of linear superposition, Equation (1.5)

above 1s valid for an arbitrary distnibution of electric charges, including discrete
charges, in which case p 15 expressed in terms of Dirac delta distributions:

px) =¥ g0 = x)) (16)



as illustrated in Figure |.2 on the facing page. Inserting this expression into expres-
sion [ 1.5) above we recover expression ( 1.4).

Taking the divergence of the general E®® expression for an arbitrary electric
charge distribution, Equation (1.5) above, and using the representation of the Dirac

(8]

Coulomb’s law for a distribution of individual charges x| localised
within a volume " of hmited extent.

delta distribution, Formula (I.73) on page 161, we find that
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which is the differential form of Gawss s law of elecirosiarics.
Since, according to Formula (F.62) on page 160, V x [Va(x)] = 0 for any 3D RB?
scalar field a(x), we immediately find that in electrostatics

V x Estl(y) = ——\Tx( frd}t’ “’(’”) (1.8)
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i.e., that E¥®* is an irrotational field.

To summarise, electrostatics can be described in terms of two vector partial differ-
ential equations
X
V. ES(y) = pLx) ) (1.9a)
£p

V x E*(x) = 0 (1.9b)

representing four scalar partial differential equations.



Electric Field due to a point charge

E-field exerts a force on other point charges

_.... - o | I
E — g0 - qo Q"
+ +
— J f} III._.- + P + "-.._I 'rjll[]
E — *':I:r Bt - +.-'I 'I_'—Ir
r= v 4 A
N J/
. . Test charge
E is a vector quantity e
Magnitude & direction vary with
position--but depend on object w/
charge Q setting up the field
O o
4 + Go
£ + | ()=
+ 4
itk )

Test charge

The electric field depends on Q, not q,. It also depends onrr.

If you replace q, with —q, or 2q,, the strength & magnitude of
the E-field at that point in space remain the same

The electrostatic FORCE, however, depends on Q AND q,
as well asr.



E-field exerts force on a charge

Consider an array of + charges and an array of — charges:

-

——®I{ P

F=qE

000000000000000
0,0/0.0]0,0,0/00]0 0000

Cathode Ray Tube

electron

cathode beam

accelerating
anodes

. -
focus]—
€ F anode Q
. deflection
coils
Cathode Aniade phosphorescent
(—) (+) screen

Precision Graphics

http://building. pbworks.com

Gauss's Law.

The total of the electric flux out of a closed surface is equal to the charge enclosed divided by the
permittivity. The electric flux through an area is defined as the electric field multiplied by the
area of the surface projected in a plane perpendicular to the field.



Reminder that the Dot product tells you to find The amount of net

electric field is a the part of £ parallel to n charge in coulombs
(perpendicular to the surface)

qenc

vector
Reminder that this The unit vector normal Reminder that only
integral is over a to the surface / the enclosed charge
closed surface =3 contributes
E ®

O, =* n da =
Electric S 80'\

Flux The electric An increment of The electric
field in N/C surface area in m?  permittivity
Tells you to sum up the of the free space
contributions from each  Reminder that this is a surface
portion of the surface integral (not a volume or a line integral)

Gauss's Law to Coulomb's Law

E is constant
everwhere on the surface

Electric Flux (I)E: y{E.dA — fEdA — E}gdA = %,n

E and dA are parallel
everywhere on the surface



Spherical
Gaussian
Surface )

the net flux through any closed surface surrounding a point charge q is
given by g/, and its independent of the shape of that surface

E(dny) =

surface area
of a sphere

qin

o

q.



Divergence Theorem

The divergence thearem, maore commanly known especially in older literature as Gauss's theoram (2.0., Arfken 1385)
and also known as the Gauss-Ostrogradsky theorem, is a theorem in vector calculus that can be stated as follows. Let
V be a region in space with boundary gV. Then the volume integral of the divergence ¥ -F of F over ¥V and the
surface intearal of F over the boundary gV of v are related by

J:WT}dV:Idea. 1)

The divergence theorem is 32 mathematical statement of the physical fact that, in the absence of the creation or
destruction of matter, the density within a region of space can change only by having it flow into or away from the
region through its boundary.

A special case of the divergence theorem follows by specializing to the plane. Letting § be a region in the plans with
boundary 45, equation (1) then collapses 0

£?~FdA=LF~ﬁds. (2)

If the vector field F satisfies certain constraints, simplified forms can be used. For example, if
Fix,v,z)=v(x,y, z)ewhsre ¢ is a constant vector 0, then

£F~da=c~£vda. (3)
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Bute # 0, and ¢-f (v) must vary with v so that ¢ - £ (v) cannot always equal zero. Therefore,

Lvdazv[:‘?vd‘f.

Similarly, if F (x, v, z) = ¢xP (x, ¥, z). where ¢ is a constant vector # (. then
vgdaxP = L? xPdV.

Poisson’s and laplace equations



A study of the previous chapter shows that several of the analogies used to
obtain experimental field maps involved demonstrating that the analogous quan-
tity satisfies Laplace’s equation. This is true for small deflections of an elastic
membrane, and we might have proved the current analogy by showing that the
direct-current density in a conducting medium also satisfies Laplace’s equation.
It appears that this is a fundamental equation in more than one field of science,
and, perhaps without knowing it, we have spent the last chapter obtaining solu-
tions for Laplace’s equation by experimental, graphical, and numerical methods.
MNow we are ready to obtain this equation formally and discuss several methods
by which it may be solved analytically.

It may seem that this material properly belongs before that of the previous
chapter; as long as we are solving one equation by so many methods, would it
not be fitting to see the equation first? The disadvantage of this more logical
order lies in the fact that solving Laplace’s equation is an exercise in mathe-
matics, and unless we have the physical problem well in mind, we may easily miss
the phyvsical significance of what we are doing. A rough curvilinear map can tell
us much about a field and then may be used later to check our mathematical
solutions for gross errors or to indicate certain peculiar regions in the field which
require special treatment.

With this explanation let us finally obtain the equations of Laplace and
Poisson.

7.1 POISSON'S AND LAPLACE’S
EQUATIONS

Obtaining Poisson’s equation is exceedingly simple, for from the point form of
Gauss's law,

v-D=p, (1)
the definition of D,
D=¢E (2)
and the gradient relationship.,
E=-VV (3

by substitution we have
V-D= ?-{EE] = —v-{va}=p,_,

ar

v.vy ==L (4)



for a homogeneous region in which ¢ is constant.

Equation (4) is Poisson’s equation, but the “double V" operation must be

interpreted and expanded, at least in cartesian coordinates, before the equation
can be useful. In cartesian coordinates,
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Usually the operation V - V is abbreviated V* (and pronounced “del squared™), a

good reminder of the second-order partial derivatives appearing in (5), and we
have
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in cartesian coordinates.

If p, = 0, indicating zero velume charge density, but allowing point charges.
line charge, and surface charge density to exist at singular locations as sources of
the field, then

Vi =10 (7

which is Laplace’s equation. The V2 operation is called the Laplacian of V.
In cartesian coordinates Laplace’s equation is
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and the form of V2V in cylindrical and spherical coordinates may be obtained by
using the expressions for the divergence and gradient already obtained in those
coordinate systems. For reference, the Laplacian in cylindrical coordinates is
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and in spherical coordinates is
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These equations may be expanded by taking the indicated partial derivatives, but
it 15 usually more helpful to have them in the forms given above; furthermore. it
is much easier to expand them later if necessary than it is to put the broken pieces
back together again.

Laplace’s eqguation is all-embracing, for, applying as it does wherever
volume charge density is zero, it states that every conceivable configuration of
electrodes or conductors produces a field for which V2V = 0. All these fields are
different, with different potential values and different spatial rates of change, vet
for each of them V>V = (. Since every field (if p, = 0) satisfies Laplace’s equa-
tion, how can we expect to reverse the procedure and use Laplace’s equation to
find one specific field in which we happen to have an interest? Obviously, more



UNIT I
MAGNETOSTATICS

Force on a current element

e We know that current flowing in a conductor is nothing but the drift of free electron's from
lower potential end of the conductor to the higher potential end

e when a current carrying conductor is placed in a magnetic field ,magnetic forces are exerted
on the moving charges with in the conductor

e Equation -1 which gives force on a moving charge in a magnetic field can also be used for
calculating the magnetic force exerted by magnetic field on a current carrying conductor (or
wire)

e Let us consider a straight conducting wire carrying current | is placed in a magnetic field
B(x).Consider a small element dl of the gire as shown below in the figure
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or dF=I(dl X B)
Drift velocity of electrons in a conductor and current | flowing in the conductor is given by I=nefvy
Where A is the area of cross-section of the wire and n is the number of free electrons per unit
volume
Magnetic force experienced by each electron in presence of magnetic field is
F=e{vq X B)
where & is the amount of charge on an electron
Total number of electron in length dl of the wire
N=nAdI
Thus magnetic force on wire of length dl is
dF=(nAdl)(evy X B}

if we denote length dl along the direction of current by the vector dl the above equation becomes
dF=(nAevy)(dl X B)
or dF=I(dl X B)

If a straight wire of length | carrying current | is placed in a uniform magnetic field then force

on wire would be equal to
dF=I(L X B)



« Direction of force is always perpendicular to the plane containing the current element IdL and
magnetic field B
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Direction of force when current element IdL and B are perpendicular to each other can also
be find using either of the following rules

Biot Savart’s law:

Biot- Savarts' Law

— —
Biot-Savarts' law provides an expression for the magnetic field due to a current segment. The field :‘fB at a position r

due to a current segment Icﬁ,‘is experimentally found to be perpendicular to dland T. The rmagnitude of the fiald is

proportional to the length | dil |and to the current { and to the sine of the angle between Land dl.

inversely proportional te the square of the distance T of the point P from the current element.
Mathematically,

:f.!x:F

T

dBoc I

In SI units the constant of proportionality is }Lﬂ’/'d:?r, where [igis the permeability of the free space. The value of figis

— 2
g = 4w x 1077 N/amp
—
The expression for field at a point P having a position vector T with respect to the current element is
- o AL X T
A3 = —I—
dr 7*



For a conducting wire of arbitrary shape, the field is obtained by vectorially adding the centributions due to such current

elements as per superposition principle, = Hao dl x 7 where the integration is along the path of the
B(P) =27 I 9
dx 72
current flaw.

Force Between Current Carrying Conductors
o ltis experimentally established fact that two current carrying conductors attract each
other when the current is in same direction and repel each other when the current are

in opposite direction
o Figure below shows two long parallel wires separated by distance d and carrying

currents I; and I,

I+ d 1L 1,4 4 1L
__1
P’.‘@ ('QB I_JEG G]B E}
¢ F_' Force

TN T

I kX
A B Al B

(A) (B)

Consider fig 5(a) wire A will produce a field B1 at all near by points .The magnitude of B; due
to current I, at a distance d i.e. on wire b is

Bl=uo|1/21Td
e According to the right hand rule the direction of Bz is in downward as shown in
figure (5a)

« Consider length | of wire B and the force experienced by it will be (121XB)
whose magnitude is
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Similarly force per unit length of A due to current in B is
F_#LL
1 2x d

e and is directed opposite to the force on B due to A. Thus the force on either
conductor is proportional to the product of the current

« We can now make a conclusion that the conductors attract each other if the
currents are in the same direction and repel each other if currents are in
opposite direction

iii) Magnetic Field along axis of a circular current carrying coil

o Letthere be a circular coil of radius R and carrying current |. Let P be any
point on the axis of a coil at a distance x from the center and which we have
to find the field

e To calculate the field consider a current element Idl at the top of the coll
pointing perpendicular towards the reader

o Current element Idl and r is the vector joining current element and point P as
shown below in the figure
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From Biot Savart law, the magnitudg.of the ‘r‘nagnetic field due to this current element at P is

dgzﬂfdhfn';}
47 ¥

o where @ is the angle between the length element dl and r
« Since Idl and r are perpendicular to each other so ®=90.Therefore

ap =214

4m
« Resolving dB into two components we have dBsin6 along the axis of the loop
and another one is dBcosB at right angles to the x-axis
« Since coil is symmetrical about x-axis the contribution dB due to the element
on opposite side (‘along -y axis ) will be equal in magnitude but opposite in
direction and cancel out. Thus we only have dBsin@ component
e The resultant B for the complete IooIp is given by,
B=|dB
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Ampere’s law
Ampere's Law states that for any closed loop path, the sum of the length elements
times the magnetic field in the direction of the length element is equal to the
permeability times the electric current enclosed in the loop.

Important Notes

¢ In order to apply Ampeére’s Law all currents have to be steady (i.e. do not change with time )

¢ Only currents crossing the area inside the path are taken into account and have some contribution
to the magnetic field

e Currents have to be taken with their algebraic signs (those going “out” of the surface are positive,
those going “in” are negative)- use right hand’s rule to determine directions and signs



Magnetic potential

The term magnetic potential can be used for either of two quantities in classical
electromagnetism: the magnetic vector potential, A, (often simply called the vector potential) and
the magnetic scalar potential, . Both quantities can be used in certain circumstances to
calculate the magnetic field.

The more frequently used magnetic vector potential, A, is defined such that the curl of A is the
magnetic field B. Together with the electric potential, the magnetic vector potential can be used
to specify the electric field, E as well. Therefore, many equations of electromagnetism can be
written either in terms of the E and B, or in terms of the magnetic vector potential and electric
potential. In more advanced theories such as gquantum mechanics, most equations use the
potentials and not the E and B fields.

The magnetic scalar potential y is sometimes used to specify the magnetic H-field in cases when
there are no free currents, in a manner analogous to using the electric potential to determine the
electric field in electrostatics. One important use of y is to determine the magnetic field due

to permanent magnets when their magnetization is known. With some care the scalar potential
can be extended to include free currents as well.

Historically, Lord Kelvin first introduced the concept of magnetic vector potential in 1851. He also
showed the formula relating magnetic vector potential and magnetic field

The magnetic vector potential A is a vector field defined along with the electric
potential ¢ (a scalar field) by the equations

aA
B=VxA, E=-V¢p— —,
'Y ¢ Bt

where B is the magnetic field and E is the electric field. In magnetostatics where there is no time-
varying charge distribution, only the first equation is needed. (In the context of electrodynamics,
the terms vector potential and scalar potential are used for magnetic vector potential and electric
potential, respectively. In mathematics, vector potential and scalar potential have more general
meanings.)

Defining the electric and magnetic fields from potentials automatically satisfies two of Maxwell's
equations: Gauss's law for magnetism and Faraday's Law. For example, if A is continuous and
well-defined everywhere, then it is guaranteed not to result in magnetic monopoles. (In the
mathematical theory of magnetic monopoles, A is allowed to be either undefined or multiple-
valued in some places; see magnetic monopole for details).

Starting with the above definitions:

V- B=V (VxA)=0
dA d B
V xE V x (—vfﬁ—ﬁ) —E[?x.ﬁ.} —E.
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Alternatively, the existence of A and ¢ is guaranteed from these two laws
using the Helmholtz's theorem. For example, since the magnetic field is
divergence-free (Gauss's law for magnetism), ie. V- B =0, A always
exists that satisfies the above definition.

The vector potential A is used when studying the Lagrangian in classical
mechanics and in quantum mechanics (see Schrddinger equation for
charged particles, Dirac equation, Aharonov—Bohm effect).

In the Sl system, the units of A are \/-5-m~" and are the same as that of
momenturn per unit charge.

Although the magnetic field B is a pseudovector (also called axial vector),
the vector potential A is a polar vector.[*] This means that if the right-hand
rule for cross products were replaced with a left-hand rule, but without
changing any other equations or definitions, then B would switch signs,
but A would not change. This is an example of a general theorem: The
curl of a polar vector is a pseudovector, and vice versa.l?]

Boundary conditions at the magnetic surfaces

Consider a Gaussian pill-box at the interface between two different media, arranged as in the
figure above. The net enclosed (free) magnetic charge density is zero so as the height of the
pill-box Ah tends to zero so the integral form of Gauss’s law tells us that

A LI
b A / B
| Ah
2 H, .
D C |
7/
Al

(B, -n)A4— (B, -0)Ad =0
which becomes exact in the mit A4 — 0 when

{B‘J_Elj'ﬁ=ﬂ



therefore the component of B normal to the interface is continuous.

To find the H-field boundary condition we apply Ampére’s circuital law to the path ABCD shown in
the diagram above. I, 1s the umit vector in the direction AB parallel to the surface so

asAh—0 so (Hy,-H,)-LAl=j -(nx1;)=(j.xn) I,

or equivalently

One can take the cross-product of this expression to obtain a form that 1s useful for deducing j, if H
1s known on each side of the boundary.

nx(H, —H)=j,.

To summarnise, the component of H tangential to the interface 1s continuous across the interface unless
there 1s a conduction surface current density j..



UNIT IV
MAGNETOSTATICS APPLICATIONS

In 1831, Michael Faraday, an English physicist gave one of the
most basic laws of electromagnetism called Faraday's law of
electromagnetic induction. This law explains the working
principle of most of the electrical motors, generators, electrical
transformers and inductors. This law shows the relationship
between electric circuit and magnetic field. Faraday performs an
experiment with a magnet and coil. During this experiment, he
found how emf is induced in the coil when flux linked with it
changes. He has also done experiments in electro-chemistry
and electrolysis.

Faraday's Experiment
RELATIONSHIP BETWEEN INDUCED EMF AND FLUX

Direction of Movement

Coil or Loop 3 :

Y &

277N\
'

Magnet

Galvanometer

In this experiment, Faraday takes a magnet and a coil and
connects a galvanometer across the coil. At starting, the magnet
is at rest, so there is no deflection in the galvanometer i.e needle
of galvanometer is at the center or zero position. When the
magnet is moved towards the coil, the needle of galvanometer
deflects in one direction. When the magnet is held stationary at
that position, the needle of galvanometer returns back to zero
position. Now when the magnet is moved away from the coil,
there is some deflection in the needle but in opposite direction
and again when the magnet becomes stationary, at that point
with respect to coil, the needle of the galvanometer returns back
to the zero position. Similarly, if magnet is held stationary and
the coil is moved away and towards the magnet, the
galvanometer shows deflection in similar manner. It is also seen
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that, the faster the change in the magnetic field, the greater will
be the induced emf or voltage in the coil.

Faraday's Laws

Faraday's First Law

Any change in the magnetic field of a coil of wire will cause an
emf to be induced in the coil. This emf induced is called induced
emf and if the conductor circuit is closed, the current will also
circulate through the circuit and this current is called induced
current.

Method to change magnetic field:

1. By moving a magnet towards or away from the coil

2. By moving the coil into or out of the magnetic field.

3. By changing the area of a coil placed in the magnetic field
4. By rotating the coil relative to the magnet.

Faraday's Second Law
It states that the magnitude of emf induced in the coil is equal to

the rate of change of flux that linkages with the coil. The flux
linkage of the coil is the product of number of turns in the coil
and flux associated with the coil.

Faraday Law Formula

Direction of Movement

=

Magnet

Coil or Loop

Galvanometer

Inductance of a Solenoid
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Inductor in Series Circuit
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The current, ( | ) that flows through the first inductor, L, has no other way to go but pass
through the second inductor and the third and so on. Then, series inductors have a Common
Current flowing through them, for example:

lu=lo=1ls=ls...ctc.

In the example above, the inductors L, L. and Ls are all connected together in series between
points A and B. The sum of the individual voltage drops across each inductor can be found
using Kirchoff’s Voltage Law (KVL) where, V+ = Vi + V: + Vs and we know from the
previous tutorials on inductance that the self-induced emf across an inductor is given

as: V =L di/dt.



So by taking the values of the individual voltage drops across each inductor in our example
above, the total inductance for the series combination is given as:

di _ 1 di i di
=L 24+ L. =4+1. =
T dt Ldt 2 dt 3 dt

By dividing through the above equation by di/dt we can reduce it to give a final expression
for calculating the total inductance of a circuit when connecting inductors together in series
and this is given as:

Inductors in Series Equation
Low =L+ L+ Ls+..... +L,etc.

Then the total inductance of the series chain can be found by simply adding together the
individual inductances of the inductors in series just like adding together resistors in series.
However, the above equation only holds true when there is “NO” mutual inductance or
magnetic coupling between two or more of the inductors, (they are magnetically isolated
from each other).

One important point to remember about inductors in series circuits, the total inductance ( L+ )
of any two or more inductors connected together in series will always be GREATER than
the value of the largest inductor in the series chain

Mutually Connected Inductors in Series

When inductors are connected together in series so that the magnetic field of one links with
the other, the effect of mutual inductance either increases or decreases the total inductance
depending upon the amount of magnetic coupling. The effect of this mutual inductance
depends upon the distance apart of the coils and their orientation to each other.

Mutually connected series inductors can be classed as either “Aiding” or “Opposing” the total
inductance. If the magnetic flux produced by the current flows through the coils in the same
direction then the coils are said to be Cumulatively Coupled. If the current flows through the
coils in opposite directions then the coils are said to be Differentially Coupled as shown
below.

Cumulatively Coupled Series Inductors
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While the current flowing between points A and D through the two cumulatively coupled
coils is in the same direction, the equation above for the voltage drops across each of the coils
needs to be modified to take into account the interaction between the two coils due to the
effect of mutual inductance. The self inductance of each individual

coil, L. and L. respectively will be the same as before but with the addition of M denoting the
mutual inductance.

Then the total emf induced into the cumulatively coupled coils is given as:
di di di di
=L —+L —+2[M—
Tat " dt 2 dt dt

Where: 2M represents the influence of coil L. on L. and likewise coil L. on L..

By dividing through the above equation by di/dt we can reduce it to give a final expression
for calculating the total inductance of a circuit when the inductors are cumulatively connected
and this is given as:

LtotaI:L1+L2+2M

If one of the coils is reversed so that the same current flows through each coil but in opposite
directions, the mutual inductance, M that exists between the two coils will have a cancelling
effect on each coil as shown below.

Differentially Coupled Series Inductors
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The emf that is induced into coil 1 by the effect of the mutual inductance of coil 2 is in
opposition to the self-induced emf in coil 1 as now the same current passes through each coil
in opposite directions. To take account of this cancelling effect a minus sign is used

with M when the magnetic field of the two coils are differentially connected giving us the
final equation for calculating the total inductance of a circuit when the inductors are
differentially connected as:

LtotaI:L1+L2_2M

Then the final equation for inductively coupled inductors in series is given as:

Ly =L +L,+2M

Inductors in Parallel Circuit
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In the previous series inductors tutorial, we saw that the total inductance, L+ of the circuit was
equal to the sum of all the individual inductors added together. For inductors in parallel the
equivalent circuit inductance L+ is calculated differently.

The sum of the individual currents flowing through each inductor can be found using
Kirchoff’s Current Law (KCL) where, I+ = I, + I> + I and we know from the previous
tutorials on inductance that the self-induced emf across an inductor is given as: V = L di/dt

Then by taking the values of the individual currents flowing through each inductor in our
circuit above, and substituting the current i for i, + i. + is the voltage across the parallel
combination is given as:

di | di, | di,
dt  dt dt

'uﬁzLT%ﬁfHE+g)=LT

By substituting di/dt in the above equation with v/L gives:

Vg = Lp|—+ 2+
AB T L1 L2 L3




We can reduce it to give a final expression for calculating the total inductance of a circuit
when connecting inductors in parallel and this is given as:

Parallel Inductor Equation

1 _ 1,1 .1 1
- A T

T Ll L2 L3 LN

Here, like the calculations for parallel resistors, the reciprocal ( 1/Ln ) value of the individual
inductances are all added together instead of the inductances themselves. But again as with
series connected inductances, the above equation only holds true when there is “NO” mutual
inductance or magnetic coupling between two or more of the inductors, (they are
magnetically isolated from each other). Where there is coupling between coils, the total
inductance is also affected by the amount of coupling.

This method of calculation can be used for calculating any number of individual inductances
connected together within a single parallel network. If however, there are only two individual
inductors in parallel then a much simpler and quicker formula can be used to find the total
inductance value, and this is:

L, xL
[ =12
T

L1+L2

One important point to remember about inductors in parallel circuits, the total inductance
( L+ ) of any two or more inductors connected together in parallel will always be LESS than
the value of the smallest inductance in the parallel chain.

Mutually Coupled Inductors in Parallel

When inductors are connected together in parallel so that the magnetic field of one links with
the other, the effect of mutual inductance either increases or decreases the total inductance
depending upon the amount of magnetic coupling that exists between the coils. The effect of
this mutual inductance depends upon the distance apart of the coils and their orientation to
each other.

Mutually connected inductors in parallel can be classed as either “aiding” or “opposing” the
total inductance with parallel aiding connected coils increasing the total equivalent
inductance and parallel opposing coils decreasing the total equivalent inductance compared to
coils that have zero mutual inductance.

Mutual coupled parallel coils can be shown as either connected in an aiding or opposing
configuration by the use of polarity dots or polarity markers as shown below.

Parallel Aiding Inductors
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The voltage across the two parallel aiding inductors above must be equal since they are in
parallel so the two currents, i. and i. must vary so that the voltage across them stays the same.
Then the total inductance, L+ for two parallel aiding inductors is given as:

— L1L2 'Mz
T L1+L2 -2M

Where: 2M represents the influence of coil L .1 on L . and likewise coil L . on L ..

If the two inductances are equal and the magnetic coupling is perfect such as in a toroidal
circuit, then the equivalent inductance of the two inductors in parallel

is L as Lr = L: = L. = M. However, if the mutual inductance between them is zero, the
equivalent inductance would be L + 2 the same as for two self-induced inductors in parallel.

If one of the two coils was reversed with respect to the other, we would then have two
parallel opposing inductors and the mutual inductance, M that exists between the two coils
will have a cancelling effect on each coil instead of an aiding effect as shown below.

Parallel Opposing Inductors
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Then the total inductance, L+ for two parallel opposing inductors is given as:



_ L,L,-M’
T L +L,+2M

This time, if the two inductances are equal in value and the magnetic coupling is perfect
between them, the equivalent inductance and also the self-induced emf across the inductors
will be zero as the two inductors cancel each other out.

This is because as the two currents, i, and i. flow through each inductor in turn the total
mutual flux generated between them is zero because the two flux’s produced by each inductor
are both equal in magnitude but in opposite directions.

Then the two coils effectively become a short circuit to the flow of current in the circuit so
the equivalent inductance, L+ becomes equalto (L M) + 2.

Mutual inductance of series and parallel circuits
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Energy stored in magnetic fields

When a conductor carries a current, a magnetic field surrounding the
conductor is produced. The resulting magnetic flux is proportional to the
current. If the current changes, the change in magnetic flux is proportional
to the time-rate of change in current by a factor called inductance (L). Since

nature abhors rapid change, a voltage(electromotive force, EMF) produced in
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the conductor opposes the change in current, which is also proportional to
the change in magnetic flux. Thus, inductors oppose change in current by
producing a voltage that,in turn, creates a current to oppose the change in

magnetic flux; the voltage is proportional to the change in current.

Energy Stored in Magnetic Field

Let's consider Fig 1, an example of a solenoid (f: length, N: number of turns, I: current, A:

cross-section area) that works as an inductor. From Eq. 1, the energy stored in the magnetic

field created by the solenoid is:

Energy Stored in Inductor
Due to energy conservation, the energy needed to drive the original current

must have an outlet. For an inductor, that outlet is the magnetic field—the
energy stored by an inductor is equal to the work needed to produce a
current through the inductor. The formula for this energy is given as:

Energy is "stored" in the magnetic field is
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Forces and torques on closed circuits

In the presence of material motion o, electric field E'ina “moving” frame is related to electric field
F in a “stationary” frame and to magnetic field B by:

F=F+ixB

This is an experimental result obtained by observing charged particles moving in combined electric
and magnetic fields. It is a relatavistic expression, so that the qualifiers “moving” and “stationary™
are themselves relative. The electric fields are what would be observed in either frame. In MQS
systems, the magnetic flux density B is the same in both frames.

The term relating to current density becomes:

E-j=(E-ixB).J

We can interpret E'-J as dissipation, but the second term bears a little examination. Note
that it is in the form of a vector triple (scalar) product:

—ixB-J=—i-BxJ=—-i#-JxB

This is in the form of velocity times force density and represents power conversion from electro-
magnetic to mechanical form. This is consistent with the Lorentz force law (also experimentally
observed):
F=JIxB

This last expression is vet another way of describing energy conversion processes in electric
machinery, as the component of apparent electric field produced by material motion through a
magnetic field, when reacted against by a current, produces energy conversion to mechanical form
rather than dissipation.



UNIT V

We have already obtained two of Maxwell’s equations for time-varying felds,

and
dB D
VrE=—— _ h
" ar VxH=.+ ?

The remaining two equations are unchanged from their non-time-varying form:

V.-D=p,

V-B=10

Maxwell’s Equation’s in integral form

Dj (E-dA= SQ—D = éjﬂ? pdV Gauss’s Law
. B-dA =0 Gauss’s Law for Magnetism
[ﬂ: E.d/=— o, _d I I B.dA Faraday’s Law
dt dtJ/a
[ﬁcﬁ-d? =u I+ HE, diE = pD_UA J+¢, (f .dA

Ampere’s Law



wave equation

The wave equation is an important second-order linear hyperbolic partial
differential equation for the description ofwaves—as they occur in classical physics—such
as soundwaves, light waves and water waves. It arises in fields like acoustics,

electromagnetics, and fluid dynamics.

9°y 1 9’y
ar> v> dt’
Plane waves in free space

comprise the plane with normal vector . Thus, the points of equal field value of always form
a plane inspace. ... A homogeneous plane wave is one in which the planes of constant
phase are perpendicular to the direction of propagation .

plane waves in free space
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Polarization

The Ficket Fence Analogy

direction, & vertical wibes fiom canmmsa ke 1t theouph both fomces.

“—-'I‘L.-ri-rht:--n-:l'ﬂ:.t:mu-ﬂ frree nre horrmonds ]l werbacml
wibea tons wlonc b ea ke ot thoospds the st fewsce vl e blos boed.

It is possible to transform unpolarized light into polarized light.Polarized light waves are
light waves in which the vibrations occur in a single plane. The process of transforming
unpolarized light into polarized light is known as polarization. There are a variety of

methods of polarizing light.

reflection and transmission of waves

When the medium through which a wave travels suddenly changes, the wave often
experiences partial transmission and partial refection at the interface. Reflection is a wave
phenomenon that changes the direction of a wavefront at an interface between two different
media so that the wavefront returns into the medium from which it originated. Transmission
permits the passage of wave, with some or none of the incident wave being absorbed.
Reflection and transmission often occur at the same time .



Consider a long string made by connecting two sub-strings with different density pl,u2 .
When the string is driven by an external force, partial reflection and transmission occurs as
in Figure 18426. For the incoming, reflected, and transmitted waves, we can try a solution of

the following forms:

U, M,

Driving
Force
Junction

Yine = A cos(kr1z — wt)

Yret = B cos(kiz + wt)

Ytrans = C cos(kox — wt)
ki and k; are determined by the speed of the wave in each medium. We choose
our coordinates such that the junction of two sub-strings is located at x=0. In choosing a trial
solution for the waves, we assumed that the incident and transmitted waves travel to the
right, while the reflected waves travel to the left. (This is why the '+' sign is chosen
before ot in the reflected wave. On the left side of the junction, we have

Ui = Yine + Yref = A Cﬂs(k1$ — i'.lJt)
On the right side, we have
Yr = Utrans = C COS(kz:E — Ldt)

We will impose additional restriction on the waves by applying "boundary conditions"
at x=0. At the boundary x=0, the wave must be continuous and there should be no

kinks in it. Thus we must have
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Energy in electromagnetic fields
Energy in Electromagnetic Waves

From Sect. 233, the energy stored per unit volume in an electromagnetic wave is given by
=] E2 + E2
2 2y

W =

Since, B = E/c, for an electromagnetic wave, and ¢ = 1/, /iy €g, the above expression yields

E? E? E? E?
w = =] 4 _ =) 4 =] :

2 2 g * 2 2

or
w = ey E°.

It is clear, from the above, that half the energy in an electromagnetic wave is
carried by the electric field, and the other half is carried by the magnetic field.

As an electromagnetic field propagates it transports energy. Let P be the power
per unit area carried by an electromagnetic wave: i.e., P is the energy transported
per unit time across a unit cross-sectional area perpendicular to the direction in
which the wave is traveling. Consider a plane electromagnetic wave propagating
along the z-axis. The wave propagates a distance cdt along the z-axis in atime
interval dt. If we consider a cross-sectional area A at right-angles to the z-axis,
then in atime dt the wave sweeps through a volume dV of space,

where dV = Acdt. The amount of energy filling this volume is

dW = wdV = ¢ E? Acdt.
It follows, from the definition of F, that the power per unit area carried by the
wave is given by
dW g E? Acdt

P=2%=" aa

so that

P=¢Ec.
Since half the energy in an electromagnetic wave is carried by the electric field,
and the other half is carried by the magnetic field, it is conventional to convert the
above expression into a form involving both the electric and magnetic field
strengths. Since, £ = ¢ B, we have
EB
Ho .

P=¢cE(cB)=cEB=



Thus,

P=="=
Ho

specifies the power per unit area transported by an electromagnetic wave at any
given instant of time. The peak power is given by

B
p_ BBy

Ho

Eq By
where and are the peak amplitudes of the oscillatory electric and magnetic
fields, respectively. It is easily demonstrated that the average power per unit area
transported by an electromagnetic wave is halfthe peak power, so that

EﬂBﬂ . EECEEE . CBﬂ2

S=PFP= = = :
2 pg 2 2 ity

The quantity S is conventionally termed the intensity of the wave.



