Course Number and Name

BEE012 & Solid State Relays

Credits and Contact Hours

3 & 45

Course Coordinator's Name

Mrs.V.Sumathi

Course Description

- To educate the basic concepts and new developments in solid state relays and power system protection
- To educate the theory and applications of the main components used in power system protection for electric machines, transformers, bus bars, overhead and underground feeders.

Prerequisites	Co-requisites					
Basic Electrical & Electronics Engg	Nil					

required, elective, or selected elective (as per Table 5-1) Required

Course Outcomes (COs)

CO1 :Gain Knowledge On Different Protective Equipment's Or Power Relays, Know About Various Protective Systems- How It Works And Where It Works?

CO2 : Different Applications Of The Relays, Circuit Breakers, Grounding For Different Elements Of Power System Is Also Discussed In The Subject.

CO3: Ability To Understand Various Power, Frequency And Impedance Relays

CO4: Ability To Understand Protective Schemes ,Transient Behavior ,Testing And Tripping Schemes

CO5: Ability To Understand Relays Using Microprocessor

Student Outcomes (SOs) from Criterion 3 covered by this Course												
COs/POs	а	b	с	d	e	f	g	h	i	j	k	1
CO1	Н	Н	Н	Н	Н	L	М	L	М	М		Н
CO2	М	М	Н	М	Н	М	L	Н	Н	Н	Н	Н
CO3	М	Н	Н	L	Н	М	М	М	М	L	L	Н
CO4	L	L	Н	Н	М	L	L	М	М	М	М	М
CO5	Н	Н	L	L	М	М	М	М	М	М	М	М
List of Topics Covered												1. <u> </u>

UNIT I INTRODUCTION OF RELAYS

Comparators: phase and amplitude comparators-types-Direct and integrating rectifier bridge, circulating current, opposed voltage coincident type phase comparator-Direct or block spike phase comparator, phase splitting technique, integrating type phase comparator with transistor AND gate, hybrid comparator with transistor AND gate. Hybrid comparator- Hall effect type and magneto resistivity type, vector product type - zener diode phase comparators-Multi input-Three input coincidence comparators

UNIT II RELAY CIRCUIT

Static relay circuit (using analog and digital ic's) for over current, inverse time characteristics, differential relay.

UNIT III RELAY CIRCUIT

Static relay circuits fort generator loss of field, under frequency, distance relay, impedance, reactance, reverse power relays.

UNIT IV TRANSIENT BEHAVIOR OF RELAYS

Static relay circuits for carrier current protection-steady state and transient behavior of static relay-testing and maintenance - tripping circuits using thyristors.

UNIT V MICROPROCESSOR BASED RELAYS

Microprocessor based relays: hardware and software for the measurement of voltage, current, frequency, phase angle-microprocessor implementation of over current relays-inverse time characteristics-impedance relay-directional relay-mho relay.

9

9

9

9

9