Course Number and Name

BEE003 & Advanced Control System

Credits and Contact Hours

3 & 45

Course Coordinator's Name

Dr.V.Jayalakshmi

Text Books and References

Text Books:

- 1. K. P. Mohandas, "Modern Control Engineering", Sanguine Technical Publishers, 2006.
- 2. G. J. Thaler, "Automatic Control Systems", Jaico Publishing House, 1993.
- 3. M.Gopal, "Modern Control System Theory", New Age International Publishers, 2002.

References:

- 1. William S Levine, "Control System Fundamentals," The Control Handbook, CRC Press, Tayler and Francies Group, 2nd edition, 2011.
- 2. Ashish Tewari, 'Modern Control Design with Matlab and Simulink', John Wiley, New Delhi, 2002.
- 3. K. Ogata, 'Modern Control Engineering', 4th edition, PHI, New Delhi, 2002.
- 4. T. Glad and L. Ljung,"Control Theory –Multivariable and Non-Linear Methods", Taylor& Francis, 2002.
- 5. D.S.Naidu, "Optimal Control Systems" First Indian Reprint, CRC Press, 2009.
- 6. http://nptel.ac.in/courses/101108047

Course Description

To provide knowledge on design in state variable form and in phase plane analysis

Prerequisites	Co-requisites							
Control System Nil								
required, elective, or selected elective (as per Table 5-1)								
Required								
Course Outcomes (COs)								

CO1:To develop mathematical models and understand the mathematical relationships between the sensitivity functions and how they govern the fundamentals in control systems.

CO2:To understand the phase plane analysis.

CO3:To give basic knowledge in describing function analysis.

CO4:To study the design of optimal controller.

CO5: To design of optimal estimator including Kalman Filter

Student Outcomes (SOs) from Criterion 3 covered by this Course												
COs/POs	а	b	с	d	e	f	g	h	i	j	k	1
CO1	Н	М	М	Н	Н		L		Н	L	L	М
CO2	Н	М	М	Н	Н		L		Н	L	L	М

CO3	Н	М		Н	Н	L	Η	L	L	М
CO4	Н	М		Н	Н	L	Н	L	L	М
CO5	Н	М	М	Н	Н	L	Н	L	L	М

List of Topics Covered

UNIT I STATE VARIABLE DESIGN

Introduction to state Model- effect of state Feedback- Necessary and Sufficient Condition for Arbitrary Pole-placement- pole placement Design- design of state Observers- separation principle- servo design: -State Feedback with integral control.

9

9

9

9

UNIT II PHASE PLANE ANALYSIS

Features of linear and non-linear systems - Common physical non-linearities – Methods of linearization Concept of phase portraits – Singular points – Limit cycles – Construction of phase portraits – Phase plane analysis of linear and non-linear systems – Isocline method.

UNIT III DESCRIBING FUNCTION ANALYSIS

Basic concepts, derivation of describing functions for common non-linearities –Describing function analysis of non-linear systems – limit cycles – Stability of oscillations.

UNIT IV OPTIMAL CONTROL

Introduction - Time varying optimal control – LQR steady state optimal control – Solution of Ricatti's equation – Application examples.

UNIT V OPTIMAL ESTIMATION

Optimal estimation – KalmanBucy Filter-Solution by duality principle-Discrete systems-Kalman Filter- Application examples.