Course Number and Name

BEE016 & Flexible AC Transmission Systems

Credits and Contact Hours

3 & 45

Course Coordinator's Name

Dr.V.Jayalakshmi

Text Books and References

Text Books:

- 1. R.MohanMathur, Rajiv K.Varma, "Thyristor Based Facts Controllers for Electrical Transmission Systems", IEEE press and John Wiley & Sons, Inc, 2002.
- 2. Narain G. Hingorani, "Understanding FACTS -Concepts and Technology of Flexible ACTransmission Systems", Standard Publishers Distributors, Delhi- 110 006, 2011.
- 3. K.R.Padiyar," FACTS Controllers in Power Transmission and Distribution", New Age International (P) Limited, Publishers, New Delhi, 2008.

References:

- 1. A.T.John, "Flexible A.C. Transmission Systems", Institution of Electrical and Electronic Engineers (IEEE), 1999.
- 2. V.K.Sood, HVDC and FACTS controllers Applications of Static Converters in Power System, APRIL 2004, Kluwer Academic Publishers, 2004.
- 3. Xiao Ping Zang, Christian Rehtanz and Bikash Pal, "Flexible AC Transmission System: Modelling and Control" Springer, 2012.
- 4. http://nptel.ac.in/courses/108104052/26

Course Description

This course introduces the application of a variety of high power-electronic controllers for active and reactive power in transmission lines. Students are exposed to the basics, modeling aspects, control and scope for different types of FACTS controllers.

Prerequisites							Co-requisites						
Power Generation Systems							Nil						
required, elective, or selected elective (as per Table 5-1)													
Required													
Course Outcomes (COs)													
CO1:To understand various types of power controllers in transmission lines.													
CO2: To understand the static VAR compensator and its applications.													
CO3: To understand the TCSC controller and its applications.													
CO4:To understand the transient stability and modelling of STATCOM.													
CO5: To learn the concept of coordination of FACTS controllers.													
Student Outcomes (SOs) from Criterion 3 covered by this Course													
COs/SOs	a	b	с	d	e	f	g	h	i	j	k	1	
CO1	Н	Η	М	М	М	М	Μ	L	Μ	М	L	Μ	
CO2	Н	Η	М	М	Η	М	М	L	М	М	L	Μ	
CO3	Н	Η	М	М	Η	Н	М	L	М	М	L	М	
CO4	Н	Η	М	Η	Η	Н	М	М	М	М	L	М	
CO5	Н	Н	М	Н	Н	Н	М	М	М	М	L	Μ	
		•	•		•		•		•		•	•	

List of Topics Covered

UNIT I INTRODUCTION

Reactive power control in electrical power transmission lines -Uncompensated transmission line - series compensation – Basic concepts of Static Var Compensator (SVC) – Thyristor Controlled Series capacitor (TCSC) – Unified power flow controller (UPFC).

UNIT II STATIC VAR COMPENSATOR (SVC) AND APPLICATIONS

Voltage control by SVC – Advantages of slope in dynamic characteristics – Influence of SVC on system voltage – Design of SVC voltage regulator –Modelling of SVC for power flow and fast transient stability – Applications: Enhancement of transient stability – Steady state power transfer – Enhancement of power system damping.

UNIT III THYRISTOR CONTROLLED SERIES CAPACITOR (TCSC) AND APPLICATIONS

Operation of the TCSC – Different modes of operation – Modelling of TCSC – Variable reactance model – Modelling for Power Flow and stability studies. Applications: Improvement of the system stability limit – Enhancement of system damping.

UNIT IV VOLTAGE SOURCE CONVERTER BASED FACTS CONTROLLERS9

Static Synchronous Compensator (STATCOM) – Principle of operation – V-I Characteristics. Applications: Steady state power transfer-enhancement of transient stability - prevention of voltage instability. SSSC-operation of SSSC and the control of power flow-modelling of SSSC in load flow and transient stability studies.

UNIT V CO-ORDINATION OF FACTS CONTROLLERS

Controller interactions – SVC – SVC interaction – Co-ordination of multiple controllers using linear control techniques – Control coordination using genetic algorithms.

9

9

9