Course Number and Name

BBM405 & Bio Sensors and Transducers

Credits and Contact Hours

3 & 45

Course Coordinator's Name

Mr.Vijayaragavan

Text Books and References

Text Books:

1. Doeblin. E. O, Measurment Systems, McGraw Hill Book Co. 1998

2. Renganathan S, Transducer Engineering, Allied Publishers, Chennai, 2000.

3.https://www1.ethz.ch/lbb/Education/Biosensors/Lecture_1_overview.pdf

Course Description

- 1. Understand the purpose of measurement, the methods of measurements, errors associated with measurements.
- 2. Know the principle of transduction, classifications and the characteristics of different transducers and study its biomedical applications

Prerequisites	Co-requisites							
Biology for Engineers	Nil							
required, elective, or selected elective (as per Table 5-1)								
Required								
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~								

Course Outcomes (COs)

CO1: Describe the purpose and calibration methods.

CO2: To study the basic characteristics of transducers.

- CO3:Know the principle of transduction, classifications and the characteristics of different transducers and study its biomedical applications
- CO4:Remember and understand the concepts, types, working and practical applications of important biosensors.
- CO5: Know some of the commonly used biomedical transducers.

Student Outcomes (SOs) from Criterion 3 covered by this Course

(COs/SOs	а	b	С	d	e	f	g	h	i	j	k	1
	CO1	М	Н	М	Н	Н	М	Η			L	М	
	CO2	М	Η	М	Н	Н	М	Η			L	М	
	CO3	М	Н	М	Н	Н	М	Η			L	М	
	CO4	М	Η	М	Н	Н	М	Η			L	М	
	CO5	М	Н	М	Н	Н	М	Н			L	М	
List of Topics Covered													

UNIT I SCIENCE OF MEASUREMENT

Units and Standards - calibration methods - statics calibration - classification of errors, error analysis - statistical methods - odds and uncertainity.

UNIT – II CHARACTERISTICS OF TRANSDUCERS

Static characteristics - accuracy, precision, sensitivity, linearity etc - mathematical model of transducers - zero first - order and second - order transducers - response to impulse step, ramp and sinsoidal inputs.

UNIT – III **VARIABLE RESISTANCE TRANSDUCERS**

Principle of operation, construction details, characteristics and applications of resistance potentiometers, strain gauges, resistance thermometers, thermistors, hot-wire aneometer, piezoresistive sensors and humidity sensors.

UNIT - IV **BIOSENSORS - PHYSIOLOGICAL RECEPTORS - J RECEPTORS** 9

Chemoreceptors, Baroreceptors, Touch receptors, Biosensors - Working Principle and Types, Applications.

UNIT - V **OTHER TRANSDUCERS**

Piezoelectric tranducers, magnetostrictive transducer, IC sensor digital transducers - smart sensor - fibre optic transducers.

9

9

9

9