Course Number and Name

BEE014&Fuzzy Logic and Neural Network

Credits and Contact Hours

3 & 45

Course Coordinator's Name

Mr.K.S.S.Prasad

Text Books and References

Text Books:

- 1. Kliryvan- Fuzzy System & Fuzzy logic Prentice Hall of India, First Edition.
- 2. Lawrence Fussett- fundamental of Neural network Prentice Hall, First Edition.

References:

- 1. Bart Kosko, "Neural network and Fuzzy System" Prentice Hall-1994
- 2. J.Klin and T.A.Folger, "Fuzzy sets" University and information- Prentice Hall -1996
- 3. J.M.Zurada, "Introduction to artificial neural systems"-Jaico Publication house, Delhi 1994
- 4. VallusuRao and HayagvnaRao , "C++ Neural network and fuzzy logic"-BPB and Publication, New Delhi,1996
- 5. Intelligent Systems and Control-http://nptel.ac.in/courses/108104049/16

Course Description

To master the various fundamental concepts of fuzzy logic and artificial neural networks. This will help you to get sufficient knowledge to analyze and design the various intelligent control systems

Prerequisites	Co-requisites						
Fundamentals of Computing	Nil						
required, elective, or selected elective (as per Table 5-1)							
Required							

Course Outcomes (COs)

CO1:To understand the basic concepts of fuzzy sets, fuzzy logic and defuzzification

- CO2:To learn the basics of Artificial Neural Networks and its algorithms
- CO3:To analyze various techniques in feedback and feed forward neural networks.
- CO4:To understand the principle of competitive neural networks and adaptive resonance theory

CO5:To learn the architecture and algorithm of Cognitron, Neo cognitron and the concepts of fuzzy associative memory and fuzzy systems.

Student Outcomes (SOs) from Criterion 3 covered by this Course												
COs/SOs	а	b	с	d	e	f	g	h	i	j	k	1
CO1	М	М	М	Н	М	М	М	Н		Н	L	Μ
CO2		М	М	Н	Н		М	Н	Н	Н	L	Μ
CO3		Н			Н	М	L	Н	Н		L	Н
CO4		Н	М		Н	М	L	М	Н	L	Н	Н
CO5	Н	М	М	Н	Н		М				L	L

List of Topics Covered

UNIT I FUNDAMENTALS OF FUZZY LOGIC

Basic concepts: fuzzy set theory- basic concept of crisp sets and fuzzy sets- complements- union-

9

intersection- combination of operation- general aggregation operationfuzzy relationscompatibility relations-orderings- morphisms- fuzzy relational equations-fuzzy set and systems

UNIT II ARCHITECTURE OF NEURAL NETWORKS

Architectures: motivation for the development of natural networks-artificial neural networksbiological neural networks-area of applications-typical Architecture-setting weights-common activations functions- Basic learning rules- Mcculloch-Pitts neuron- Architecture, algorithm, applications-single layer net for pattern classification- Biases and thresholds, linear separability -Hebb'srule- algorithm -perceptron - Convergence theorem-Delta rule

UNIT III BASIC NEURAL NETWORK TECHNIQUES

Back propagation neural net:standard back propagation-architecture algorithm- derivation of learning rules-number of hidden layers--associative and other neural networks- hetro associative memory neural net, auto associative net- Bidirectional associative memory-applications-Hopfield nets-Boltzman machine

UNIT IV COMPETITIVE NEURAL NETWORKS

Neural network based on competition: fixed weight competitive nets- Kohonenself organizing maps and applications-learning vector quantization-counter propagation nets and applications adaptive resonance theory: basic architecture and operation-architecture, algorithm, application and analysis of ART1 & ART2

UNIT V SPECIAL NEURAL NETWORKS

Cognitron and Neocognitron- Architecture, training algorithm and application-fuzzy associate memories, fuzzy system architecture- comparison of fuzzy and neural systems

9

9

9

9