Course Number and Name

BEE050 & Process Control Engineering

Credits and Contact Hours

3 & 45

Course Coordinator's Name

Mr.K.S.Prasad

Text Books and References

- 1. Stephanopoulos. G, "Chemical Process Control An Introduction to Theory and Practice", Prentice Hall of India, 2005.
- 2. Johnson .C.D, "Process Control Instrument Technology", Prentice Hall Inc., 2004.

Course Description

To enable the students to learn the basic concepts of process control and to develop sufficient knowledge of the various control actions and design of controllers used to control any process.

Prerequisites	Co-requisites						
Control System	Nil						
required, elective, or selected elective (as per Table 5-1)							
Required							

Course Outcomes (COs)

CO1: Learn the basic control actions and. Compute the Mathematical Model for different process.

- CO2: Analyse the characteristics of different types of Controllers and selection of controller.
- CO3: Select ,design and tune a controller to suit a particular process

CO4: Identify the basic components of a final control element and distinguish the different Characteristics of control valve.

CO5: Understand and analyze the concept of multi loop control techniques

Student O	utcome	es (SOs) from	Criteri	on 3 co	vered	by this	Course	e			
COs/	a	b	с	d	e	f	g	h	i	j	k	1
POs												
CO1	Η	Η	L		L				Η			М
CO2	М	Η	М		L				М			М
CO3	М	Η	Η		М				Η			М
CO4	Н	М	М		L				М			М
CO5	М	М	L		М				М			М
List of Topics Covered												

UNIT I MATHEMATICAL MODELLING OF PROCESS

Process control introduction – Need for process control –Hardware elements of a process control system – Need of Mathematical modelling –Mathematical model of level, pressure ,thermal processes and interacting and non-interacting systems– Servo and Regulator Operation – Batch & Continuous Process – Concept of self regulation– Dead time–Degrees of freedom – Linearization.

UNIT II VARIOUS CONTROLLERS AND ITS CHARACTERSTICS

Characteristics of ON- OFF, Single speed floating and PID controllers – Response of P,PI and PID controllers to various type of error signals – Analysis of Servo and Regulatory response of P and PI and PID controllers for first order and second order process – Reset Wind-up and prevention – Derivative and Proportional kick –Bumpless transfer – Selection of a controller for a particular process

UNIT III CONTROLLER DESIGN

Need for controller tuning –Evaluation criteria - Quarter Decay Ratio, IAE, ISE and ITAE– Optimum controller tuning using Evaluation criteria–Tuning of PID controllers using Process reaction curve method, Damped oscillation method and Z-N tuning method.

UNIT IV FINAL CONTROL ELEMENTS

I/P, P/I converters – Final control elements - Pneumatic and electric actuators -Types of control valves - Valve positioner and its importance - Inherent and Installed characteristics of control valve - Control valve sizing - Cavitation and flashing.

UNIT V MULTI LOOP CONTROL

Feed-forward control – Ratio control – Cascade control – Inferential control – Split-range and introduction to multivariable control – Examples from distillation column and boiler systems – IMC– Model Predictive Control – Adaptive control – P&ID diagram.

9

9

9

9

9