Course Number and Name

BEE302 & Electrical Machines–I

Credits and Contact Hours

3 & 45

Course Coordinator's Name

Mrs.Anitha Sampathkumar

Text Books and References

Text Books:

- 1. Kothari.D.P and Nagrath.I.J., "Electrical Machines", Tata McGraw Hill Publishing Co.Ltd, New Delhi, 5th edition 2002.
- 2. Bimbhra.P.S, Electrical Machinery, Khanna Publishers, IL
- 3. Stephen L. Herman"Electrical transformers and rotating machines " Prentice Hall of India. 1st edition 2012.
- 4. Theraja B.L. "Electrical Technology: Volume II. S. Chand and Co., New Delhi 2012.

References:

- 1. Dr. Murugesh Kumar.K. "DC Machines & Transformers", Vikas Publishing House PvtLtd.,2nd edition 2003.
- 2. Fitgerald, A.E., Charles Kingsely Jr. Stephen D.Umans, "Electric Machinery" McGraw Hill Books Company, 6 th edition 2002.
- Hill Stephen, Chapman.J, "Electric Machinery Fundamentals", McGraw Hill Book Co., New Delhi, 4th edition 2005.
- 4. Albert E Clayton and Hancock.N.N, "The performance and design of direct current Machines", Oxford and IBH publishing company Pvt. Ltd., New Delhi 1990.
- 5. http://nptel.ac.in/courses/108105017/

Course Description

To give the students a fair knowledge on the working of various DC machines & Transformers

Prerequisites	Co-requisites									
Basic Electrical & Electronics Engineering	Nil									
required, elective, or selected elective (as per Table 5-1)										
Required										
Course Outcomes (COs)										
CO1: To familiarize the constructional details, the principle of operation, prediction of										
performance, the methods of testing the transformers and three phase transformer										
Connections.										
CO2: To introduce the principles of electromechanical energy conversion in singly and										
multiply excited systems.										
CO3: To study the working principles of electrical machines using the concepts of										
electromechanical energy conversion principles and derive expressions for generated										

voltage and torque developed in all Electrical Machines.

- CO4: To study the working principles of DC machines as Generator and Motor, types, determination of their no-load/load characteristics, starting and methods of speed control of motors.
- CO5: To estimate the various losses taking place in D.C. machines and to study the different testing methods to arrive at their performance.

	Student Outcomes (SOs) from Criterion 3 covered by this Course												
	COs/SOs	а	b	с	d	e	f	g	h	i	j	k	1
	CO1	Н	Н	L	L	Н	М	Μ	L	L	L	L	L
	CO2	Н	Н	L	L	Μ	М	Μ	L	L	L	L	L
	CO3	Н	Н	L	L	Н	М	М	L	L	L	L	L
	CO4	Н	Н	L	L	Н	М	М	L	L	L	L	L
	CO5	Н	Н	L	L	Н	М	Μ	L	L	L	L	L
List of Topics Covered													

UNIT IELECTRO MAGNETIC INDUCTION & BASIC CONCEPTS IN
ROTATING MACHINES9

Introduction to magnetic circuits – Magnetically induced EMF and force – AC operation of magnetic circuits –. Energy in magnetic systems – Field energy & mechanical force – Single and Multiple excited systems. MMF of distributed windings – Magnetic fields in rotating machines – Generated voltages – Torque.

UNIT II DC GENERATORS

Constructional features of DC machine – Principle of operation of DC generator – EMF equation – Types of excitation – No load and load characteristics of DC generators – commutation – armature reaction – Parallel operation of DC generators.

UNIT III DC MOTORS

9

Principle of operation of DC motors-Back EMF – Torque equation –Types of DC motors-Speed – Torque characteristics of DC motors – Starting of DC motors: 2 point starter, 3 point starter, 4 point starter – Speed control: Field control, Armature control, voltage control, Thyristor control – Losses and efficiency – Applications

UNIT IV TRANSFORMERS

Principle of operation – Constructional features of single phase and three phase transformers – EMF equation – Transformer on No load and Load –Phasor diagram --equivalent circuit – Regulation - three phase transformer connections- parallel operation of single phase and three phase transformer- Auto transformers

UNIT V TESTING OF DC MACHINES& TRANSFORMERS

Losses and efficiency –Condition for maximum efficiency – Testing of DC machines: Brake test, Swinburne's test, Retardation test, Hopkinson's test- Testing of transformer: polarity test, load test, open circuit and short circuit test, Sumpner's test – All day efficiency.

9