Course Number and Name

BEE301 & Circuit Theory

Credits and Contact Hours

4 & 60

Course Coordinator's Name

Mrs.Sherine

Text Books and References

Text Books:

- 1. Sudhaker A. and Shyam Mohan S.P, "Circuits and Network Analysis and Synthesis" Tata McGrew Hill Co. Ltd., New Delhi, 1994.
- 2. Hyatt W.H. and Kemmerlay J.E. "Engineering Circuits Analysis", McGrew Hill International Editions, 1993.

References:

- 1. Edminister J.A. "Theory and Problems of Electric Circuits "Schaum's outline series, McGrew hill Book Company 2nd edition, 1983.
- 2. http://nptel.ac.in/courses/108102042/

Course Description

To develop problem solving skills and understanding of circuit theory through the application of techniques and principles of electrical circuit analysis to common circuit problems.

Prerequisites	Co-requisites								
Basic Electrical and Electronics Engineering	Nil								
required, elective, or selected elective (as per Table 5-1)									
Required									

Course Outcomes (COs)

CO1: To understand the basic circuit elements, fundamental laws applied for circuits.

CO2: To develop the ability to understand the concepts of Sinusoidal steady state response of impedance and admittance and also power measurements for simple circuits.

CO3: To understand the different network theorems.

CO4: To understand the Transient response for dc circuits.

CO5: To understand the concepts of resonance and coupled circuits.

Student Outcomes (SOs) from Criterion 3 covered by this Course												
COs/SOs	a	b	С	d	e	f	g	h	i	j	k	1
CO1	M	Н	Н	Н	L	M	L			Н	M	M
CO2	M	Н	Н	M	M	Н	M	M		L	M	M
CO3	Н	M		Н	Н		M			L	L	M

CO4	Н	M		Н	Н	L	M	M	L	M	M
CO5	M	M	M	M	Н		M		L	L	M

List of Topics Covered

UNIT I BASIC CIRCUIT CONCEPTS

12

Circuit elements – Kirchhoff's Law – V-I Relationship of R,L and C – Independent Sources – Dependent sources – Simple Resistive circuits – Networks reduction – Voltage division – current source transformation.- Analysis of circuit using mesh current and nodal voltage methods.

UNIT II SINUSOIDAL STEADY STATE ANALYSIS

12

Phasor – Sinusoidal steady state response concepts of impedance and admittance – Analysis of simple circuits – Power and power factors — Solution of three phase balanced circuits and three phase unbalanced circuits –-Power measurement in three phase circuits.9+

UNIT III NETWORK THEOREMS (BOTH AC AND DC CIRCUITS) 12

Superposition theorem – The venin's theorem - Norton's theorem-Reciprocity theorem-Maximum power transfer theorem.

UNIT IV TRANSIENT RESPONSE FOR DC CIRCUITS

12

Transient response of RL, RC and RLC Circuits using Laplace transform for DC input with sinusoidal input.

UNIT V RESONANCE AND COUPLED CIRCUITS

12

Series and parallel resonance – their frequency response – Quality factor and Bandwidth - Self and mutual inductance – Coefficient of coupling – Tuned circuits – Single tuned circuits.