Course Number and Name

BMA301 & Mathematics - III

Credits and Contact Hours

4 & 75

Course Coordinator's Name

Mrs.Subhashini

Text Books and References

Text Books:

- 1. Kreyszig, E."Advanced Engineering Mathematics" 8th Edition, John Wiley and Sons, (Asia) Pvt., Ltd, Singapore, 2000.[Units I, II, & V]
- 2. Monty J.Strauss, Gerald L.Bradley, and Karl L.Smith. "Calculus" 3rdEdn.[Prentice Hall] University Bookstore, New Delhi. [Units III & IV]

References:

- Narayanan, S.Manicavachangam Pillay, T.K.Ramanaiah, G."Advanced Mathematics for Engineering Students", Volume2 and 3(2nd Edition), S.Viswanathan (Printers & Publishers Pvt, Ltd.,) 1992.
- 2. Venkataraman, M.K "Engineering Mathematics" Volumes3-A&B, 13th Edition National Publishing Company, Chennai, 1998.
- 3. Grewal, B.S., "Higher Engineering Mathematics" (35thEdition), Khanna Publishers, Delhi, 2000.
- 4. George B. Thomas and Ross L.Finney. "Calculus and Analytical Geometry" 9thEdn. Narosa Indian Student Edition, New Delhi.
- 5. Dennis G.Zill and Warren S.Wright. "Advanced Engineering Mathematics". 3rdEdn. Jones & Bartlett Publishers, UK. 1992.

Course Description

To equip students with adequate knowledge of Mathematics to formulate problems in Engineering, and solve them analytically

Prerequisites	Co-requisites						
Maths I & II	Nil						
required, elective, or selected elective (as per Table 5-1)							

Required

Course Outcomes (COs)

CO1: Solve PDE of second and higher order with constant coefficients.

CO2: Expand given functions by using the concept of Fourier series.

CO3: Solve many of the Engineering models of Heat equations and Wave equations which are PDEs with boundary conditions.

CO4: Solve many problems in Automobile, Medicine, and Electronic Engineering which are differential equations of linear or non-linear.

CO5: Solve differential equations by Laplace transforms

	Student Outcomes (SOs) from Criterion 3 covered by this Course													
С	COs/SOs	а	b	с	d	e	f	g	h	i	j	k	1	
	CO1	Н					М				L			
	CO2	М		Н					L			М		
	CO3	М			Н									
	CO4	М						М			Н		L	
	CO5			L										

List of Topics Covered

UNIT I PARTIAL DIFFERENTIAL EQUATIONS

Formation - Solutions of standard types of first order equations - Lagrange's Linear equation - Linear partial differential equations of second and higher order with constant coefficients.

UNIT II FOURIER SERIES

Dirichlet's conditions - General Fourier series - Half-range Sine and Cosine series - Parseval's identity - Harmonic Analysis.

UNIT III BOUNDARY VALUE PROBLEMS

Classification of second order linear partial differential equations - Solutions of one - dimensional wave equation, one-dimensional heat equation - Steady state solution of two-dimensional heat equation - Fourier series solutions in Cartesian coordinates.

UNIT IV LAPLACE TRANSFORMS

Transforms of simple functions - Basic operational properties - Transforms of derivatives and integrals - Initial and final value theorems - Inverse transforms - Convolution theorem - Periodic functions - Applications of Laplace transforms for solving linear ordinary differential equations upto second order with constant coefficients and simultaneous equations of first order with constant coefficients.

UNIT V FOURIER TRANSFORMS

Statement of Fourier integral theorem - Fourier transform pairs - Fourier Sine and Cosine transforms - Properties - Transforms of simple functions - Convolution theorem - Parseval's identity.

9+6

9+6

9+6

9+6

9+6