Course Number and Name

BEE504 & Electrical Machine Design

Credits and Contact Hours

4&60

Course Coordinator's Name

Mrs. Anitha Sampathkumar

Text Books and References

Text Books:

- 1.Sawhney, A.K., 'A Course in Electrical Machine Design', Dhanpat Rai& Sons, New Delhi, 1984.
- 2. Sen, S.K., 'Principles of Electrical Machine Designs with Computer Programmes', Oxford and IBH Publishing Co. Pvt. Ltd., New Delhi, 1987

References:

A.Shanmugasundaram, G.Gangadharan, R.Palani, 'Electrical Machine Design Data Book', New Age Intenational Pvt. Ltd., Reprint 2007.

Course Description

To provide sound knowledge about constructional details and design of various electrical machines.

Prerequisites	Co-requisites							
Electrical Machines-I & II	Nil							
required, elective, or selected elective (as per Table 5-1)								
Required								

Course Outcomes (COs)

CO1: To study MMF calculation and thermal rating of various types of electrical machines.

CO2:To design armature and field systems for D.C. machines

CO3: To design core, yoke, windings and cooling systems of transformers

CO4: To design stator and rotor of induction machines

CO5: To design stator and rotor of synchronous machines and study their thermal behavior

Student Outcomes (SOs) from Criterion 3 covered by this Course

COs/SOs	a	b	С	d	e	f	g	h	i	j	k	1
CO1	Н	Н	L	L	Н	M	M	L	L	L	L	L
CO2	Н	Н	L	L	M	M	M	L	L	L	L	L
CO3	Н	Н	L	L	Н	M	M	L	L	L	L	L
CO4	Н	Н	L	L	Н	M	M	L	L	L	L	L
CO5	Н	Н	L	L	Н	M	M	L	L	L	L	L

List of Topics Covered

UNIT I INTRODUCTION

12

Major considerations in Electrical Machine Design - Electrical Engineering Materials - Space factor - Choice of Specific Electrical and Magnetic loadings - Thermal considerations - Heat flow - Temperature rise - Rating of machines - Standard specifications.

UNIT-II DCMACHINES

12

Output Equations – Main Dimensions - Magnetic circuit calculations – Carter's Coefficient - Net length of Iron –Real & Apparent flux densities – Selection of number of poles – Design of Armature – Design of commutator and brushes – performance prediction using design values.

UNIT-III TRANSFORMERS

12

Output Equations – Main Dimensions - KVA output for single and three phase transformers – Window space factor – Overall dimensions – Operating characteristics – Regulation – No load current – Temperature rise in Transformers – Design of Tank - Methods of cooling of Transformers.

UNIT-IV INDUCTIONMOTOR

12

Output equation of Induction motor – Main dimensions – Length of air gap- Rules for selecting rotor slots of squirrel cage machines – Design of rotor bars & slots – Design of end rings – Design of wound rotor – Magnetic leakage calculations – Leakage reactance of polyphase machines- Magnetizing current – Short circuit current – Circle diagram - Operating characteristics.

UNIT-V SYNCHRONOUS MACHINES

12

Output equations – choice of loadings – Design of salient pole machines – Short circuit ratio – shape of pole face – Armature design – Armature parameters – Estimation of air gap length – Design of rotor –Design of damper winding – Determination of full load field mmf – Design of field winding – Design of turbo alternators – Rotor design.