Course Number and Name

BMA502 & Numerical methods

Credits and Contact Hours

4 & 75

Course Coordinator's Name

Dr.M.Ramya

Text Books and References

Text Books:

- 1. Sastry.SS "Introductory Numerical Methods" PHI, 2010[Units I to III]
- Jain K.K. Iyengar, S.R.K and Jain, R.K. "Numerical Methods for Scientific and Engineering Computation" 3rd edition, New Age International Publications and Co. 1993.[Units IV & V]

References:

- 1. Grewal, B.S. "Higher Engineering Mathematics (36th edition)" Khanna Publication Delhi 2001.
- 2. Curtis F.Gerald. "Applied Numerical Analysis" 7th Edn. Pearson Education, Chennai-600113. 2007
- 3 Dennis G.Zill and Warren S.Wright. "Advanced Engineering Mathematics". 3rd Edn. Jones & Bartlett Publishers, UK. 1992.

Course Description

To train the students with Mathematical techniques to solve problems in Engineering with numerical data.

Prerequisites							Co-requisites						
Mathematics-I							Nil						
required, elective, or selected elective (as per Table 5-1)													
Required													
Course Outcomes (COs)													
CO1: Solve a single equation and a system of linear equations by different methods and get exact													
Solution and iterative solution.													
CO2: Interpolate a dependent variable based on a given set of values by a suitable method.													
CO3: Find integral value and differential coefficient based on a given set of values.													
CO4: Solve initial value problem of ODE and boundary value problems of PDE.													
Student Outcomes (SOs) from Criterion 3 covered by this Course													
COs/SOs	а	b	с	d	e	f	g	h	i	j	k	1	
CO1	Η	Н	L	L	Н	Μ	Μ	Μ	L	L	L	L	
CO2	Η	Н			Н	Μ	Μ	Μ		L			
<u> </u>	II	II			TT	М	М	М			т	T	
005	п	п			п	IVI	IVI	IVI			L	L	
CO4	Н	Н	L	L	Н	М	М	М	L	L	L	L	
201													
List of Top	ics Cov	vered											

UNIT-1 SOLUTION OF EQUATIONS AND EIGEN VALUE PROBLEMS 9+6

Iterative method, Newton–Raphson methods for single variable- Solutions of linear system by Gaussian, Gauss-Jordan, Jacobian and Gauss-Siedel methods, Inverse of Matrix by Gauss Jordan method, Eigen value of a Matrix power and Jacobian methods.

UNIT-II INTERPOLATION (FINITE DIFFERENCES)

Newton's Divided Difference Formula, Lagrange's Interpolation-Forward and Backward Difference Formula-Sterling's and Bessel's Central Difference Formula.

UNIT-III NUMERICAL DIFFERENTIATION AND INTEGRATION 9+6

Numerical Differentiation with interpolation polynomials, Numerical Integration by Trapezoidal Simpson's (both 1/3 and 3/8) rule, Double integrals using Trapezoidal and Simpson's rule.

UNIT-IV INITIAL VALUE PROBLEMS FOR ORDINARY DIFFERENTIAL EQUATIONS

Single Step methods, Taylors Series, Euler and Modified Euler, Runge-Kutta methods of first and second order Differential equations, Multi Step methods, Milne and Adam's-Bashforth predictor and corrector method.

UNIT-V BOUNDARY VALUE PROBLEMS FOR ODE AND PDE 9+6

Finite difference for the second order Ordinary Differential Equations, Finite Difference solutions for one dimensional heat equations(both Implicit and Explicit), One Dimensional wave equation, Two Dimensional, Laplace and Poisson Equation.

9+6