Course Number and Name

BEE604 & DIGITAL SIGNAL PROCESSING

Credits and Contact Hours

3 & 45

Course Coordinator's Name

Dr.S.P.Vijayaragavan

Text Books and References

Text Books:

- **1.** J.G. Proakis and D.G. Manolakis, 'Digital Signal Processing Principles, Algorithms and Applications', Pearson Education/ PHI, 4th Edition, New Delhi, 2007.
- **2.** S.K. Mitra, 'Digital Signal Processing A Computer Based Approach', Tata McGrawHill, 3rd Edition, New Delhi, 2008.

References:

- 1. Alan V. Oppenheim, Ronald W. Schafer and John R. Buck, 'Discrete Time Signal Processing', Pearson Education, New Delhi, 2003.
- Emmanuel C Ifeachor and Barrie W Jervis, "Digital Signal Processing A Practical Alan V. Oppenheim, Ronald W. Schafer and John R. Buck, 'Discrete – Time Signal Processing', Pearson Education, New Delhi, 2003.

Approach" Pearson Education, Second edition, 2002.

- **3.** Steven W. Smith, "The Scientist and Engineer's Guide to Digital Signal Processing", Second Edition, California Technical Publishing San Diego, California. <u>www.DSPguide.com</u>)
- **4.** B. Venkataramani, M. Bhaskar, 'Digital Signal Processors, Architecture, Programming and Applications', Tata McGraw Hill, New Delhi, 2003

Course Description

- To classify signals and systems & their mathematical representation.
- To analyse the discrete time systems.
- To study various transformation techniques & their computation.
- To study about filters and their design for digital implementation.
- To study about a programmable digital signal processor & quantization effects

Prerequisites	Co-requisites								
Mathematics-III	Nil								
required, elective, or selected elective (as per Table 5-1)									
Required									
Course Outcomes (COs)									
CO1: Explain Properties and algorithms for implementation of DFT.									
CO2: Filters Describe and their structures.									
CO3: Illustrate the design of FIR and IIR filters.									
CO4: Describe the quantization effects.									

CO5: Relate the architectures and instruction set of a Digital Signal Processor.

Student O	Student Outcomes (SOs) from Criterion 3 covered by this Course											
COs/SOs	a	b	с	d	e	f	g	h	i	j	k	1
CO1	Н	Н	М	Η	L	L	М	Η	Η	Η	Η	Η
CO2	Н	Н	Η	Η	Η	L	М	Η	Η		Η	Η
CO3	Н	Н	Н	Н	Н			Н	Н	Н	Н	Н
CO4	М	М	L	Η	М			Η	Η		Η	М
CO5	Н	Н	Η	Η	Η	М	М	Η	Η			Η
List of Top	List of Topics Covered											

UNIT I INTRODUCTION

Classification of systems: Continuous, discrete, linear, causal, stable, dynamic, recursive, time variance; classification of signals: continuous and discrete, energy and power; mathematical representation of signals; spectral density; sampling techniques, quantization, quantization error, Nyquist rate, aliasing effect. Digital signal representation.

UNIT II DISCRETE TIME SYSTEM ANALYSIS

Z-transform and its properties, inverse z-transforms; difference equation – Solution byztransform, application to discrete systems - Stability analysis, frequency response – Convolution – Fourier transform of discrete sequence – Discrete Fourier series.

UNIT III DISCRETE FOURIER TRANSFORM & COMPUTATION

DFT properties, magnitude and phase representation - Computation of DFT using FFT algorithm – DIT & DIF - FFT using radix 2 – Butterfly structure.

UNIT IV DESIGN OF DIGITAL FILTERS

FIR & IIR filter realization – Parallel & cascade forms. FIR design: Windowing Techniques – Need and choice of windows – Linear phase characteristics. IIR design: Analog filter design - Butterworth and Chebyshev approximations; digital design using impulse invariant and bilinear transformation - Warping, prewarping – Frequency transformation.

UNIT V DIGITAL SIGNAL PROCESSORS

Introduction – Architecture – Features – Addressing Formats – Functional modes - Introduction to Commercial Processors

9

9

9

9

9