Course Number and Name

BEE7L1 & Power System Using PC Laboratory

Credits and Contact Hours

2 & 45

Course Coordinator's Name

Dr.V.Jayalakshmi

Text Books and References

Lab Manual

Course Description

To provide better understanding of power system analysis through MATLAB simulation

PrerequisitesCo-requisitesNilPower System Analysis

required, elective, or selected elective (as per Table 5-1) Required

Course Outcomes (COs)

CO1: Acquire skills of using computer packages MATLAB coding in power system studies.

CO2: Model and simulate power system network with stable and unstable situation.

CO3: Analyse the performance of Power System Network using MATLAB tools.

CO4: To perform the dynamic analysis of power system.

CO5: To have hands on experience on various system studies and different techniques used for system planning.

Student Outcomes (SOs) from Criterion 3 covered by this Course														
	COs/SOs	а	b	с	d	e	f	g	h	i	j	k	1	
	CO1	М	М		Н	Н				М			Μ	
	CO2	М	Н		Н	Н				М			Μ	
	CO3	М	Η		Н	Н				М			Μ	
	CO4	Н	Η		Н	Н				М			Μ	
	CO5	М	М		Н	Н				Н			Н	

List of Topics Covered

LIST OF EXPERIMENTS

- 1. Per Unit Computation
- 2. Formation of Y Bus Matrix by Inspection Method
- 3. Formation of Z Bus Matrix
- 4. Gauss Seidal Method
- 5. Load Flow Solution using Fast Decouple Method
- 6. Load Flow Solution by Newton Raphson Method
- 7. Short Circuit Analysis
- 8. Economic dispatch using MATLAB Software
- 9. Swing equation
- 10. Load frequency control
- **11.** Study of Programmable Logic Controller