Course Number and Name

BMA301 – MATHEMATICS III

Course Objective

To introduce Fourier series analysis which is central to many applications in engineering apart From its use in solving boundary value problems systems.

To acquaint the student with Fourier transform techniques used in wide variety of situations. To introduce the effective mathematical tools for the solutions of partial differential equations

that model several physical processes and to develop Z transform techniques for discrete time

Prerequisites						Co-requisites										
Engineering Mathematics I & II					Nil											
Course Outcomes (COs)																
CO1		Solve a set of algebraic equations representing steady state models formed in engineering														
		problems														
CO2		Fit smooth curves for the discrete data connected to each other or to use interpolation methods over these data tables.														
CO3		Find	Find the trend information from discrete data set through numerical differentiation													
005		Tinu	The the trend information from discrete data set through numerical differentiation													
CO4		To su	To summary information through numerical integration													
CO5		Solve	Solve PDE models representing spatial and temporal variations in physical systems through													
		nume	numerical method													
CO6		Have	Have the necessary proficiency of using MATLAB for obtaining the above solution													
Student Outcomes (SOs) from Criterion 3 covered by this Course																
	COs/SOs	а	b	с	d	e	f	g	h	i	j	k	1			
	CO1	L		Н				М								
	CO2		Н	Н				М					1			
	CO3							М	Н							
	CO4									Η	Η		1			
	CO5							М			Н	Н	1	-		
	CO6	<u> </u>						М					L			