		r 1		1	TA 1	
Course 1	•	nn	aer	and	- 1 1	ame
Course		unn		anu	1 1	anc

BME303 – MECHANICS OF SOLIDS

Credits and Contact Hours

4&60

Course Coordinator's Name

Mr.R.Sharavanan

Text Books and References

TEXT BOOKS:

1. Prabhu T.J. – Mechanics of Solids, 2009

REFERENCES:

- 1. Gere Timoshenko Mechanics of materials CBS, 1997.
- 2. Beer & Johnson Mechanics of materials, SI Metric Edition McGraw Hill, ISE, 2006.
- 3. Timoshenko & young, Engineering Mechanics McGraw Hill, 2007.
- 4. Popov E.P. Engineering Mechanics of solids PHI, New Delhi, 2006.
- 5. Shames Irvin. H Introduction to Solid Mechanics PHI,2002
- 6. www.freeengineeringbooks.com/Civil/Mechanics-of-Solids-Books.php

Course Description

To gain knowledge of simple stresses, strains and deformation in components due to external loads. To assess stresses and deformations through mathematical models of beams twisting bars or combinations of both.

	Prerequisites	Co-requisites						
Engineering Mechanics		Nil						
required, elective, or selected elective (as per Table 5-1)								
Required								
Course Outcomes (COs)								
CO1	Upon completion of this course, the students can able to apply mathematical knowledg							
	calculate shear force & Bending moment diagram							
CO2	Understand stress and strain behavior of solids							
CO3	Understand and analyze stress behavior.							
CO4	analyze the deflection in beams							
CO5	Understand thick and thin cylinder							
CO6	Upon completion of this course, the	students can able to apply mathematical knowledge to						
	calculate the deformation behavior of	of simple structures.						
Student Outcomes (SOs) from Criterion 3 covered by this Course								

COs/SOs	a	b	С	d	e	f	g	h	i	i	k	1	
CO1	Н	Н	L				5	М	М	J	Н	Н	•
CO2	Н	Н	L					М	М		Н	Н	•
CO3	Н	Н	L					М	М		Н	Н	•
CO4	Н	Н	L					М	М		Н	Н	•
CO5	Н	Н	L					М	М		Н	Н	
CO6	Н	Н	L					М	М		Н	Н	

List of Topics Covered

UNIT I TRUSSES, SHEAR FORCE AND BENDING MOMENT DIAGRAM

12

Analysis of trusses – Method of joints – Method of section – Shear force and Bending moment diagram – cantilever – simply supported – overhanging beams, Relation between load, shear force and bending moments.

UNITII STRESS AND STRAIN BEHAVIOUR OF SOLIDS

12

Tension, Compression and shear, Normal stress and strain, Statically indeterminate problems – temperature effects – stress and strain diagram – Elasticity – Plasticity, strain energy in tension – Impact loads – Shear stress and strain – Allowable stress – Poisson's ratio – Relation between elastic constants.

PRINCIPAL STRESSES Principal stresses and maximum shear stress – importance of zero principal stress in a three dimensional state of stress – Solution to problems by analytical method, Calculation of principal stress and maximum shear stress for a pressure vessel and shaft.

UNIT III BENDING & TORSION

12

Normal and shear stresses in beams – Torsion of circular shafts – Statically indeterminate torsional members – Torque diagrams, Strain energy in torsion.

UNIT IV DEFLECTION OF BEAMS

12

Slope and deflection of beams – Double integration method – Macaulay's method – Strain energy method for cantilever, simply supported and overhanging beams.

UNIT V THIN AND THICK CYLINDERS

12

Thin cylinder and shells – Volumetric strain – rotational stress in thin cylinders and discs, Thick cylinders – Shrink fit – Compounding of cylinders.

COLUMN AND STRUTS Columns and struts – Eccentric loading of short struts – Euler's Formula – Limitations of Euler's formula – Rankine – Gordon formula – Johnson's Parabolic formula.