BGE004-ELECTRONICS FOR MECHANICAL SYSTEM

Academic Course Description

BHARATH UNIVERSITY Faculty of Engineering and Technology Department of Mechanical Engineering BGE004-ELECTRONICS FOR MECHANICAL SYSTEM Seventh Semester, 2015-16 (odd Semester)

Course (catalog) description

To understand the various components, operations and applications of different types of power plants .

Compulsory/Elective course	e :	Non-Major elective
Credit & contact hours	:	3 & 45
Course Coordinator :		A.BUCKSHUMIYAN
Instructors :		

Name of the instructor	Class	Office	Office	Email (domain:@	Consultation
	handling	location	phone	bharathuniv.ac.in	
Vijaya	4A,4B	JR201,		Vijaya.mct@bharathuniv.ac.in	9.00am-9.50
		JR202			am

Relationship to other courses:

Pre –requisites Co –requisites	:	Mechatronics
Assumed knowledge	:	Study about robots
Following courses	:	Nil

Syllabus Contents

UNIT I DIGITAL ELECTRONICS

Basic logic Gates - Application of logic gates – De-Morgan's theorem-Boolean Expression-Minimization of Boolean expression-Minterm - Maxterm-Sum of Products(SOP)-Product ofSum(POS)–K-MAP- Digital Comparators – Code Converter – Adders – Sequential logic – Flip flops – SR/JK/D – Counters – Synchronous and Asynchronous – Shift registers – Memory I.C's – RAM, ROM, EPROM – Multiplexers – Demultiplexers - Decoders – Encoders.

9

9

UNIT II SIGNAL GENERATORS

Operational Amplifier / Inverting / Noninverting / Summing / Integrating / Differential / Logarithmic –Bridge Measurements-Maxwell,Hay,Schering,Andeson,Weinbridge,Wheat Stone Bridge - Comparison of Analog& Digital Techniques, Electronic multimeter,Function generator-Pulse and Square wave Generator-Harmonic Distortion

UNIT III 8085 ARCHITECHTURE

UNIT IV MICROPROCESSOR PROGRAMMING

Programming concepts – Machine code – Hex code – Basic concepts of assembly language – Instruction sets – Addressing modes – Assembly language programming examples – Addition of 8 bit numbers in two memory addresses – Subtraction, Multiplication – Division -Determination of the biggest number in the list of numbers - Counting – sorting – Delay subroutine – Delay with stepper motors.

Block diagram with CPU – Input/output – Components and features of CPU – Program Instructions -Control Unit - Arithmetic

logic unit – Registers – Significance of data, address and control bus – Architecture of Intel 8085A and Pin Configuration.

UNIT V APPLICATIONS IN MECHANICAL SYSTEMS

Introduction-Generation of I/O ports-Programmable peripheral Interface(PPI)- Intel 8255 -Keyboard and Display Controller(8279) ,Traffic light control-washing Machine control –DC Motor-Stepper Motor- D/A Converters- A/D converters–Automotive applications – Antilock braking – Steering – transmission and suspension systems- Illustrative Examples.

TEXTBOOKS:

1.Goankar R.S., Microprocessor Architecture programming and Applications, New AgeInternational.2006.2.W.Bolton, Mechatronics, Addison Wesley Longman, 2006.

REFERENCES:

- 1. M.Morris Mono, Digital Design, 3rd Edition, Prentice Hall of India Pvt Ltd.,2003/Pearson Education(Singapore) Pvt Ltd.,New Delhi.,2003.
- 2. Malvino A.P., Digital Electronics, Principle and Applns.-TMH 1989V.K. Mehta, Principle of Electronics, S.Chand& Company, 2007.
- 3. Kenneth J.Ayala." The 8086 Microprocessor: Programming & Interfacing the PC" Delmar Publishers, 2007.
- 4. Douglas V., Hall, Microprocessors Interfacing, Programming And Hardware, TMH 2007.
- 5. https://www.amazon.com/Mechatronics-Electronic-mechanical...ebook

Total: 45

Computer usage:

Professional component

•		
General	-	0%
Basic Sciences	-	10%
Engineering sciences & Technical arts	-	100%
Professional subject	-	100%

Broad area : Non-conventional sources of energy

Test Schedule

S. No.	Test	Tentative Date	Portions	Duration
1	Cycle Test-1	February 2 nd week	Session 1 to 14	2 Periods
2	Cycle Test-2	March 2 nd week	Session 15 to 28	2 Periods
3	Model Test	April 3nd week	Session 1 to 45	3 Hrs
4	University Examination	ТВА	All sessions / Units	3 Hrs.

9

9

Mapping of Instructional Objectives with Program Outcome

To enable the students to understand the fundamental concepts of Semi Conductors, Transistors, Rectifiers, Digital Electronics and 8085 Microprocessors		Correlates to program outcome		
Rectifiers, Digital Electronics and 6005 Wieroprocessors	Н	Μ	L	
Upon completion of this course, the students can able to understand digital electronics	a			
Learn concepts of 8085 architecture	c,i		e,k	
Learn the concepts of signal generators	a	f		
Learn the concepts of programming	с	g	e	
Learn the concepts of applications in mechanical system	i			
Learn the concepts of braking and steering system	а		e,l	

H: high correlation, M: medium correlation, L: low correlation **Draft Lecture Schedule**

Session No	Topics to be covered	Problem solving Yes/no	Text/chapter
	UNIT-I		
1	Basic logic Gates		
1		NO	
2	Application of logic gates	NO	
3	De-Morgan's theorem	NO	
4	Product ofSum(POS)–K-MAP	NO	
5	Boolean Expression-Minimization of Boolean expression-Minterm	NO	[T1]/CHAPTER- 4,5,6
5	Maxterm-Sum of Products(SOP)	NO	
6	Digital Comparators – Code Converter – Adders – Sequential logic – Flip flops – SR/JK/D – Counters	NO	
7	Synchronous and Asynchronous – Shift registers – Memory I.C's – RAM, ROM, EPROM	NO	
8	Multiplexers – Demultiplexers	YES	

9	Decoders – Encoders.	NO	[T1]/CHAPTE R-6	
	UNIT-II			
10	Operational Amplifier	NO		
11	Inverting / Noninverting	NO		
12	Summing / Integrating / Differential	NO		
13	Logarithmic –Bridge Measurements-	YES		
14	Maxwell,Hay,Schering,Andeson,Weinbridge,Wheat Stone Bridge	YES	[T1]/CHAPTE R-2	
15	Maxwell,Hay,Schering,Andeson,Weinbridge,Wheat Stone Bridge	NO		
16	Comparison of Analog& Digital Techniques, Electronic multimeter,Function generator	NO		
17	Pulse and Square wave Generator	YES		
18	Harmonic Distortion	YES		
10	UNIT-III			
19	Block diagram with CPU	NO		
20	Input/output	NO		
21	Components and features of CPU	NO		
22	Program Instructions	YES	[T1]/CHAPTER [R1]/CHAPTER 11,12,13	
23	Control Unit	YES		
24	Arithmetic logic unit – Registers	YES		
25	Significance of data, address and control bus	NO		
26	Architecture of Intel 8085A and Pin Configuration	YES		

27	Architecture of Intel 8085A and Pin Configuration	YES	
	UNIT-IV		
28	Programming concepts – Machine code	NO	
29	Hex code	NO	
30	Basic concepts of assembly language	NO	
31	Instruction sets – Addressing modes	NO	
32	Subtraction, Multiplication – Division	NO	[R1]/CHAPTER-15
33	Assembly language programming examples	NO	
34	Addition of 8 bit numbers in two memory addresses	NO	
35	Determination of the biggest number in the list of numbers - Counting – sorting – Delay subroutine	NO	
36	Delay with stepper motors.	NO	

	UNIT-5		
37	Introduction	NO	
38	Generation of I/O ports	NO	
39	Programmable peripheral Interface(PPI)- Intel 8255	NO	
40	Keyboard and Display Controller(8279	NO	ER-14 [R1]/CHAPT
41	Traffic light control-washing Machine control	YES	ER-16,18
42	DC Motor-Stepper Motor- D/A Converters- A/D converters	YES	
43	Automotive applications	YES	
44	Antilock braking – Steering	YES	

Teaching Strategies

45

The teaching in this course aims at establishing a good fundamental understanding of the areas covered using:

- Formal face-to-face lectures
- Tutorials, which allow for exercises in problem solving and allow time for students to resolve problems in understanding of lecture material.
- Laboratory sessions, which support the formal lecture material and also provide the student with practical construction, measurement and debugging skills.
- Small periodic quizzes, to enable you to assess your understanding of the concepts.

Evaluation Strategies

Cycle Test – I	-	5%
Cycle Test – II	-	5%
Model Test	-	10%
Assignment /		
Seminar /		
Online Test /		
Quiz	-	5%
Attendance	-	5%
Final exam	-	70%

Prepared by : S.THIRUMAVALAVAN

Addendum

ABET Outcomes expected of graduates of B.Tech / MECH / program by the time that they graduate:

a) The ability to apply knowledge of mathematics, science, and engineering fundamentals.

b) The ability to identify, formulate and solve engineering problems.

c) The ability to design a system, component, or process to meet the desired needs within realistic constraints such as economic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability.

d) The ability to design and conduct experiments, as well as to analyze and interpret data

e) The ability to use the techniques, skills, and modern engineering tools necessary for engineering practice.

f) The ability to apply reasoning informed by the knowledge of contemporary issues.

g) The ability to broaden the education necessary to understand the impact of engineering solutions in a global, economic, environmental, and societal context.

h) The ability to understand professional and ethical responsibility and apply them in engineering practices.

i) The ability to function on multidisciplinary teams.

j) The ability to communicate effectively with the engineering community and with society at large.

k) The ability in understanding of the engineering and management principles and apply them in project and

finance management as a leader and a member in a team.

1) The ability to recognize the need for, and an ability to engage in life-long learning.

Program Educational Objectives

PEO1: PREPARATION:

Mechanical Engineering graduates are enthusiastic to provide strong foundation in mathematical, scientific and engineering fundamentals necessary to analyze, formulate and solve engineering problems in the field of Mechanical Engineering.

PEO2: CORE COMPETENCE:

Mechanical Engineering graduates have competence to enhance the skills and experience in defining problems in the field of Mechanical Engineering and Technology design and implement, analyzing the experimental evaluations, and finally making appropriate decisions.

PEO3: PROFESSIONALISM:

Mechanical Engineering graduates made competence to enhance their skills and embrace new thrust areas through self-directed professional development and post-graduate training or education.

PEO4: PROFICIENCY:

Mechanical Engineering graduates became skilled to afford training for developing soft skills such as proficiency in many languages, technical communication, verbal, logical, analytical, comprehension, team building, inter personal relationship, group discussion and leadership skill to become a better professional.

PEO5: ETHICS:

Mechanical Engineering graduates are morally merged to apply the ethical and social aspects of modern Engineering and Technology innovations to the design, development, and usage of new products, machines, gadgets, devices, etc.

Course Teacher	Signature
A.BUCKSHUMIYAN	
S.THIRUMAVALAVAN	
G.ANBALAGAN	

Course Coordinator A.BUCKSHUMIYAN

BGE004-ELECTRONICS FOR MECHANICAL SYSTEM

HOD/MECH