Academic Course Description

BHARATH UNIVERSITY

Faculty of Engineering and Technology

Department of Mechanical Engineering

BCH201 - ENGINEERING CHEMISTRY II

Second Semester, 2015-16 (Even Semester)

Course (catalog) description

The purpose of this course is to develop a strong foundation in the principles and methods to understand the properties in of the surface phenomenon, phase rule and alloys, advanced Engineering materials, fuels and analytical techniques.

Compulsory/Elective course: Ele	ctive co	ourse : Compulsory for All first year students
Credit & contact hours	:	3 & 45
Course Coordinator	:	Ms.Madhubala, Associate Professor

Instructors

:

Name of the instructor	Class	Office location	Office	Email (domain:@ bharathuniv.ac.in	Consultation
instructor	handling	location	phone	bharathuniv.ac.m	
Dr. A. Manikandan	First Year B.Tech, Students	First year Block		Chemistryhod2017@ gmail.com	9.00 - 9.50 AM
Faculties of chemistry Department	First Year B.Tech, Students	First year Block		Chemistryhod2017@ gmail.com	9.00 - 9.50 AM

Relationship to other courses:

Pre –requisites	: Chemistry I
Assumed knowledge	: The students will have a chemistry, physics and mathematics background obtained at a higher secondary (or equivalent) level.
Following courses	: Chemistry Lab

Syllabus Contents

UNIT I - SURFACE CHEMISTRY

INTRODUCTION : Adsorption , absorption , desorption , adsorbent , adsorbate and sorption – (definition only) - Differences between adsorption and absorption - Adsorption of gases on solids – factors affecting adsorption of gases on solids – Adsorption isotherms – Frendlich adsorption isotherm and Langmuir adsorption isotherm - Role of adsorbents in catalysis (in heterogeneous catalysis, Ion-exchange adsorption and pollution abatement.

UNIT II - PHASE RULE AND ALLOYS

INTRODUCTION : Statement of Phase Rule and explanation of terms involved – one component system – water system – Construction of phase diagram by thermal analysis - Condensed phase rule [Definition only] Two Component System : Simple eutectic systems (lead-silver system only) – eutectic temperature – eutectic composition – Pattinsons Process of desilverisation of Lead - Alloys : Importance, ferrous alloys – nichrome and stainless steel – 18/8 stainless steel – heat treatment of steel – annealing –hardening – tempering – normalizing – carburizing – nitriding - Non- ferrous alloys: Brass and Bronze

UNIT III - ANALYTICAL TECHNIQUES

INTRODUCTION: Types of spectroscopy - Atomic spectroscopy – molecular spectroscopy – Explanation – differences between Atomic spectra – molecular spectra, Absorption spectrum and Emission spectrum, Photo physical laws - Lambert's law - Beer-Lambert's law –applications (determination of unknown concentration) - IR spectroscopy: Principle – instrumentation (block diagram only) – working - finger print region: UV-visible spectroscopy - Principle – instrumentation (block diagram only) – working – estimation of iron by colorimetry Beer-Lambert's law - Flame photometry– principles – instrumentation (block diagram only) – working - estimation of sodium ion by Flame photometry

UNIT IV - FUELS

INTRODUCTION : Calorific value – types of Calorific value - gross calorific value – net calorific value; Analysis of Coal – Proximate and ultimate analysis – hydrogenation of coal - Metallurgical coke – manufacture by Otto-Hoffmann method - Petroleum processing and

9

9

9

9

fractions – cracking – catalytic cracking – types – fixed bed catalytic cracking method- Octane number and Cetane number (definition only) - Synthetic petrol – Bergius processes – Gaseous fuels- water gas, producer gas, CNG and LPG (definition and composition only) - Flue gas analysis – importance - Orsat apparatus

UNIT V - ENGINEERING MATERIALS

INTRODUCTION : Refractories ; Definition - characteristics - classification – acidic, basic and neutral Refractories – properties - refractoriness- measurement of refractoriness (Segar Cone Test) ,refractoriness under load measurement of refractoriness under load , dimensional stability-reversible and irreversible dimension stability - porosity, thermal spalling – definition – reason for spalling – points to decrease the spalling) - Manufacture of Refractories : alumina bricks and Magnesite bricks, Lubricants: haracteristics - Classification - Liquid lubricants - Properties – viscosity index (definition , determination), flash and fire points, cloud and pour points, oilyness) - Solid lubricants – graphite and molybdenum sulphide

TEXT BOOKS:

- 1. P.C.Jain and Monica Jain, "Engineering Chemistry" Dhanpat Rai Pub, Co., New Delhi (2002).
- 2. S.S.Dara "A text book of Engineering Chemistry" S.Chand & Co.Ltd., New Delhi (2006).
- 3. P. J. Lucia, M. Subhashini, "Engineering Chemistry, Volume 1", Crystal Publications, Chennai, (2007).

Computer usage: Yes

Professional component

General	-	10%
Basic Sciences	-	80%
Engineering sciences & Technical arts	-	10%
Professional subject	-	0%

Broad area: Surface Chemistry, Phase Rule And Alloys, Analytical Techniques, Fuels, Engineering Materials

9

Test Schedule

S. No.	Test	Tentative Date	Portions	Duration
1	Cycle Test-1	February 2 nd week	Session 1 to 14	2 Periods
2	Cycle Test-2	March 2 nd week	Session 15 to 28	2 Periods
3	Model Test	April 2 nd week	Session 1 to 45	3 Hrs
	University			
4	Examination	TBA	All sessions / Units	3 Hrs.

Mapping of Instructional Objectives with Program Outcome

To enhance the fundamental knowledge in Chemistry and its applications relevant to various streams of Engineering and		Correlates to program outcome		
Technology. This course emphasizes:	Н	М	L	
Understand about the gaseous properties in solid of the surface phenomenon.	a,e	g.i	k	
Understand the principle and properties of the phase rule and alloys.	С	e,j	b.h	
Acquire Knowledge on instruments involved in the analytical techniques	d	b	i	
Acquire Knowledge on fuels	a	c,m	d,f	
To Understand the impact of Advanced Engineering materials in technical uses		g	b,c	

H: high correlation, M: medium correlation, L: low correlation

Draft Lecture Schedule

Session	Topics	Problem solving (Yes/No)	Text / Chapter
	UNIT -I : SURFACE CHEMIS	TRY	
1.	Adsorption- Types of adsorption	No	
2.	Adsorption of gases on solids	No	
3.	Adsorption isotherms	YES	_
4.	Frendlich and Langmuir Isotherms	Yes	
5.	Adsorption of solute from solution	Yes	
6.	Applications of Adsorptions	No	 [T1, R2]
7.	Role of adsorbents in catalysis	Yes	
8.	Ion exchange adsorption	Yes	
9.	Pollution abatement	Yes	
	UNIT II: PHASE RULE AND ALLO	DYS - 9 HRS	<u> </u>
10.	Statement and explanation of terms	No	
	involved in one component system		
11.	Water system, condensed phase rule	Yes	
12.	Construction of phase diagram by thermal	Yes	
	analysis		[T2, R2]
13.	Simple eutectic system – Pb – Ag System	No	
14.	Alloys- importance of alloys	Yes	
15.	Ferrous alloys, Nichrome and Stainless steel	YES	
16.	Heat treatment of steel	YES	

17.	Non- ferrous alloys	No	
18.	Brass and Bronze	No	_
	UNIT III: ANALYTICAL TECHNIQU	UES - 9 HRS	
19.	Analytical techniques, introduction and Beer- Lambert's law	No	
20.	UV- Visible Spectroscopy - Principles , Instrumentation and Applications	No	
21.	IR Spectroscopy - Principles, instrumentation and Applications	No	[T3, R32]
22.	Explanation of Finger – Print Region	No	
23.	Estimation of Iron by Colorimetry (Block diagram only)	No	
24.	Flame Photometry- Principle,Instrumentation (Block diagram only)	Yes	_
25.	Estimation of Sodium by Flame Photometry	No	
26.	Atomic Absorption Spectroscopy- Principle, instrumentation (Block diagram only)	No	
27.	Estimation of Nickel by Atomic Absorption Spectroscopy	No	
UNIT IV:	FUELS - 9 HRS		
28.	FUELS - CLASSIFICATION	No	
29.	ANALYSIS OF COAL - PROXIMATE	YES	[T2, R3]
30.	ULTIMATE ANALYSIS OF COAL	YES	

31.	MANUFACTURE OF COKE	No	
32.	LIQUID FUELS	Yes	
33.	CATALYTIC CRACKING AND METHODS	Yes	
34.	SYNTHETIC PETROL	No	
35.	GASEOUS FUELS	No	
	UNIT V: ENGINEERING MATERIALS - 9	HRS	
36.	Refractories- Classification – Properties	No	
37.	Manufacture of Refractories - Alumina and Magnesite	No	
38.	Abrasives- Natural and - Quartz , Garnet , Diamond, Emery , Corundum	No	_
39.	Synthetic Abrasives - Silicon Carbide and Boron Carbide	No	[T1, T2, R3]
40.	Lubricants- Mechanism of Lubrication, Liquid Lubricants	No	
41.	Properties- Viscosity index, Flash and Fire points, Cloud and Pour points, Oilyness,	No	
42.	Solid Lubricants - Graphite and Molybdenum Sulphide	No	
43.	Nanomaterials- Introduction to nanochemistry	No	
45.	Carbon nanotubes and their applications	No	

Teaching Strategies

The teaching in this course aims at establishing a good fundamental understanding of the areas covered using:

- □ Formal face-to-face lectures
- □ Tutorials, which allow for exercises in problem solving and allow time for students to resolve problems in understanding of lecture material.
- □ Laboratory sessions, which support the formal lecture material and also provide the student with practical construction, measurement and brainstorming skills.
- □ Small periodic quizzes, to enable you to assess your understanding of the concepts.

Evaluation Strategies

Cycle Test – I	-	5%
Cycle Test – II	-	5%
Model Test	-	10%
Assignment / Seminar / Online Test / Quiz	-	5%
Attendance	-	5%
Final exam	-	70%

Prepared by: Dr. A. Manikandan, Associate Professor, Department of Chemistry

Addendum

<u>ABET Outcomes expected of graduates of B.Tech / MECH / program by the time that they graduate:</u>

a) The ability to apply knowledge of mathematics, science, and engineering fundamentals.

b) The ability to identify, formulate and solve engineering problems.

c) The ability to design a system, component, or process to meet the desired needs within realistic constraints such as economic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability.

d) The ability to design and conduct experiments, as well as to analyze and interpret data

e) The ability to use the techniques, skills, and modern engineering tools necessary for engineering practice.

f) The ability to apply reasoning informed by the knowledge of contemporary issues.

g) The ability to broaden the education necessary to understand the impact of engineering solutions in a global, economic, environmental, and societal context.

h) The ability to understand professional and ethical responsibility and apply them in engineering practices.

i) The ability to function on multidisciplinary teams.

j) The ability to communicate effectively with the engineering community and with society at large.

k) The ability in understanding of the engineering and management principles and apply them in project and finance management as a leader and a member in a team.

I) The ability to recognize the need for, and an ability to engage in life-long learning.

Program Educational Objectives

PEO1: PREPARATION:

Mechanical Engineering graduatesare enthusiastic to provide strong foundation in mathematical, scientific and engineering fundamentals necessary to analyze, formulate and solve engineering problems in the field of Mechanical Engineering.

PEO2: CORE COMPETENCE:

Mechanical Engineering graduates have competence to enhance the skills and experience in defining problems in the field of Mechanical Engineering and Technology design and implement, analyzing the experimental evaluations, and finally making appropriate decisions.

PEO3: PROFESSIONALISM:

Mechanical Engineering graduates made competence to enhance their skills and embrace new thrust areas through self-directed professional development and post-graduate training or education.

PEO4: PROFICIENCY:

Mechanical Engineering graduates became skilled to afford training for developing soft skills such as proficiency in many languages, technical communication, verbal, logical, analytical, comprehension, team building, inter personal relationship, group discussion and leadership skill to become a better professional.

PEO5: ETHICS:

Mechanical Engineering graduates are morally merged to apply the ethical and social aspects of modern Engineering and Technology innovations to the design, development, and usage of new products, machines, gadgets, devices, etc.

BCH201 - ENGINEERING CHEMISTRY II

Course Teacher	Signature
Dr. A. Manikandan	
Faculties of chemistry Department	

Course Coordinator

HOD/MECH

Ms.Madhubala