Academic Course Description

BHARATH University Faculty of Engineering and Technology Department of Mechanical Engineering

BEE201 Basic Electrical and Electronics Engineering

Second Semester, 2015-16 (Even Semester)

Course (catalog) description

This course introduces to the concepts and definitions of Ohms law, KCL, KVL, power and energy. By applying Kirchhoff's current and voltage laws to circuits in order to determine voltage, current and power in branches of any circuits excited by DC voltages and current sources. Apply simplifying techniques to solve DC circuit problems using basic circuit theorems and structured methods like node voltage and mesh current analysis. This course also introduces the basic electronics components like Logic gates, Flip lops etc. This course also introduces the construction and operating principle of AC machines, DC machines, Generators and Transformers.

Compulsory/Elective cours	e:	Compulsory for all circuit branch students
Credit hours	:	2 credits
Course Coordinator	:	Mr.Vijayaraghavan, Asst. Professor

:

Instructors

Name of the	Class	Office	Office	Email (domain:@	Consultation
instructor	handling	location	phone	bharathuniv.ac.in	
Mr.K.SAKTHIVEL	All First Year	FIRST YEAR		ksakthivelme@gmail.com	9.00-9.50 AM
	Students	MAIN			
		BULIDING			
Mrs.SHERINE	All First Year	FIRST YEAR		Sherine07@gmail.com	12.45-1.15
	Students	MAIN			PM
		BULIDING			

Relationship to other courses:

Pre –requisites	:	BPH101 Engineering Physics –I
Assumed knowledge	:	The students will have a physics and mathematics background obtained at a high school (or Equivalent) level. In particular, working knowledge of basic mathematics including Differentiation, integration and probability theories are assumed.
Following courses	:	BEEE Lab

- 5. D. I. Konari and I. 5. Nagradi Electric indennies Tata MeGraw-Tim Education, 2004
- 4. Millman and Halkias, "Integrated Electronics", Tata McGraw Hill Edition, 2004.

Computer usage: Nil

Professional component		
General	-	0%
Basic Sciences	-	0%
Engineering sciences & Technical arts	-	0%
Professional subject	-	100%

Broad area : Circuit Theory | Electronics | Transmission Lines and Networks | Linear Integrated Circuits

Test Schedule

S. No.	Test	Tentative Date	Portions	Duration
1	Cycle Test-1	February 2 nd week	Session 1 to 14	2 Periods
2	Cycle Test-2	March 2 nd week	Session 15 to 28	2 Periods
3	Model Test	April 3 rd week	Session 1 to 45	3 Hrs
5	University Examination	ТВА	All sessions / Units	3 Hrs.

Mapping of Instructional Objectives with Program Outcome

To develop problem solving skills and understanding of circuit theory through the application of techniques and principles of electrical circuit analysis to common circuit problems. This course emphasizes:		Correlates to program outcome	
	Н	М	L
1. To develop an understanding of the fundamental laws and elements of electric circuits.	b,c,d,j	a,f,k	e,g
2. To develop the ability to apply circuit analysis to DC and AC circuits	b,c,f	a,d,g,h	j
3. To understand the measuring instruments of electrical quantities and its constructions.	a,d,e	b,g	j,k
4. Introduce students to construction of machines.	a,d,e	b,g,h,k	f,j
5. To learn the working operation of logic gates, flip flops and registers	е	a,b,c,d,g	j,k

H: high correlation, M: medium correlation, L: low correlation

Draft Lecture Schedule

Session	Topics	Problem solving	Text / Chapter
		(103/110)	
1.	Circuit elements, Ohms Law	Yes	
2.	Kirchhoff's Law – V-I Relationship of R,L and C	Yes	-
3.	Series parallel combination of R, L&C	No	
4.	mesh current & node voltage method	Yes	
5.	superposition theorem	Yes	[T1]
6.	Thevenin's theorem	Yes	
7.	Norton's Theorem -Problems.	Yes	
	UNIT II ELECTRICAL MACHI	INES	1
8.	Construction of DC motor	No	
9.	Principle of operation DC motor	No	
10.	Basic Equations and applications of DC machines	Yes	
11.	Construction and operation of DC generator	No	
12.	Single phase Induction Motor	No	[T1]
13.	Single Phase Transformer	No	
	UNIT III BASIC MEASUREMEN	NT SYSTEMS	
14.	Introduction to Measurement Systems	No	_
15.	Construction and Operating principles of PMMC	No	_
16.	Construction and Operating principles of PMMI-Moving Iron	No	[74]
17.	Dynamometer Wattmeter	No	
18.	power measurement by three-watt meter	No	
19.	two watt method – and Energy meter.	No	
	UNIT IV SEMICONDUCTOR D	DEVICES	
20.	Basic Concepts of semiconductor devices	No	
21.	PN Junction Diode Characteristics and its Applications	No	
22.	HWR, FWR	No	
23.	Zener Diode	No	[T1]
24.	BJT- CB, CE, CC configuration	No	
	UNIT V DIGITAL ELECTRONI	CS	
25.	Number system	No	
26.	Logic Gates	No	
27.	Boolean Algebra	No] [T1]
28.	De-Morgan's Theorem	No	
29.	Half Adder & Full Adder	No	
30.	Flip Flops	No	1

Teaching Strategies

The teaching in this course aims at establishing a good fundamental understanding of the areas covered using:

- Formal face-to-face lectures
- Tutorials, which allow for exercises in problem solving and allow time for students to resolve problems in understanding of lecture material.
- Laboratory sessions, which support the formal lecture material and also provide the student with practical construction, measurement and debugging skills.
- Small periodic quizzes, to enable you to assess your understanding of the concepts.

Evaluation Strategies

Cycle Test – I	-	5%
Cycle Test – II	-	5%
Model Test	-	10%
Assignment /		
Seminar / Online		
Test / Quiz	-	5%
Attendance	-	5%
Final exam	-	70%

Prepared by: K.Sakthivel, Assistant professor, Department of EEE

BEE201-BASIC ELECTRICAL AND ELECTRONICS ENGINEERING

ABET Outcomes expected of graduates of B.Tech / MECH / program by the time that they graduate:

a) The ability to apply knowledge of mathematics, science, and engineering fundamentals.

b) The ability to identify, formulate and solve engineering problems.

c) The ability to design a system, component, or process to meet the desired needs within realistic constraints such as economic,

environmental, social, political, ethical, health and safety, manufacturability, and sustainability.

d) The ability to design and conduct experiments, as well as to analyze and interpret data

e) The ability to use the techniques, skills, and modern engineering tools necessary for engineering practice.

f) The ability to apply reasoning informed by the knowledge of contemporary issues.

g) The ability to broaden the education necessary to understand the impact of engineering solutions in a global, economic, environmental, and societal context.

h) The ability to understand professional and ethical responsibility and apply them in engineering practices.

i) The ability to function on multidisciplinary teams.

j) The ability to communicate effectively with the engineering community and with society at large.

k) The ability in understanding of the engineering and management principles and apply them in project and finance management as a leader and a member in a team.

I) The ability to recognize the need for, and an ability to engage in life-long learning.

Program Educational Objectives

PEO1: PREPARATION:

Mechanical Engineering graduates are enthusiastic to provide strong foundation in mathematical, scientific and engineering fundamentals necessary to analyze, formulate and solve engineering problems in the field of Mechanical Engineering.

PEO2: CORE COMPETENCE:

Mechanical Engineering graduates have competence to enhance the skills and experience in defining problems in the field of Mechanical Engineering and Technology design and implement, analyzing the experimental evaluations, and finally making appropriate decisions.

PEO3: PROFESSIONALISM:

Mechanical Engineering graduates made competence to enhance their skills and embrace new thrust areas through self-directed professional development and post-graduate training or education.

PEO4: PROFICIENCY:

Mechanical Engineering graduates became skilled to afford training for developing soft skills such as proficiency in many languages, technical communication, verbal, logical, analytical, comprehension, team building, inter personal relationship, group discussion and leadership skill to become a better professional.

PEO5: ETHICS:

Mechanical Engineering graduates are morally merged to apply the ethical and social aspects of modern Engineering and Technology innovations to the design, development, and usage of new products, machines, gadgets, devices, etc.

Name of the instructor	Signature
Mr.K.SAKTHIVEL	
Mrs.SHERINE	

Course Coordinator

HOD/MECH

Mr.Vijayaraghavan

Page 5 of 6