UNIT - I D.C. AND A.C CIRCUITS

Ohm's law – Kirchoff's Laws, V – I Relationship of Resistor (R) Inductor (L) and capacitor (C). Series parallel combination of R, L&C – Current and voltage source transformation – mesh current & node voltage method –superposition theorem – Thevenin's and Norton's Theorem – Problems.

UNIT – II ELECTRICAL MACHINES

Construction, principle of operation, Basic Equations and applications - D.C.Generators and

D.C.Motors. -Single phase Induction Motor - Single Phase Transformer.

UNIT – III BASIC MEASURMENT SYSTEMS

Introduction to Measurement Systems, Construction and Operating principles of PMMC, Moving Iron, Dynamometer Wattmeter, power measurement by three-watt meter and two watt method – and Energy meter.

UNIT IV - SEMICONDUCTOR DEVICES

Basic Concepts of semiconductor devices – PN Junction Diode Characteristics and its Application – HWR, FWR – Zener Diode – BJT (CB, CE, CC) configuration & its characteristics.

UNIT V - DIGITAL ELECTRONICS

Number system – Logic Gates – Boolean Algebra – De-Morgan's Theorem – Half Adder & FullAdder – Flip Flops.

Total No. of Periods: 30

TEXT BOOKS:

- 1. N.Mittle "Basic Electrical Engineering". Tata McGraw Hill Edition, New Delhi, 1990.
- 2. A.K. Sawhney, 'A Course in Electrical & Electronic Measurements &

Name of the ntation	n',Dennat Rai	and Office ⁰⁴ .	Office	Email (domain:@	Consultation
instructorMillma	n anandhingos	C-Hocation ^{Elec}	phone	Devicebharathumits.ac.Inta McC	raw
G.SubashiniHill	II-A, B	JR001		Subashini.maths@	9.00 - 9.50 AM
				bharathuniv.ac.in	
Mr.REFERENCE BOO	DKS: II-C	JR003		Pari.maths@	11.40 -12.30 PM
1. Edminister J.	A. "Theory an	d problems of 1	Electric	Circuibhafathanniv sacCintline Se	ries.
Ms.Arthi McGraw Hill	Boold Dan pay,	IRODAtition, 198	3.	Arthi.maths@gmail.com	10.50 - 11.40 AM

 Hyatt W.H and Kemmerlay J.E. "Engineering Circuit Analysis", McGraw Hill Internatinal Editions, 1993.

3. D. P. Kothari and I. J. Nagrath "Electric machines" Tata McGraw-Hill Education, 2004

4. Millman and Halkias, "Integrated Electronics", Tata McGraw Hill Edition, 2004.

Computer usage: Nil

Professional component

0%
100%
00%
0%

6

6

6

6

6

Session	Topics	Problem solving (Yes/No)	Text / Chapter	
	UNIT I SOLUTION OF EQUATIO	N AND EIGEN VALUE P	ROBLEMS	
1.	ITERATION METHOD -INTRODUCTION	Yes		
2.	NEWTON RAPHSON METHOD FOR SINGLE	Yes	-	
	VARIABLE			
3.	PROBLEMS	Yes	[T1]	
4.	SOLUTION OF LINEAR SYSTEM BY GEM	Yes		
5.	GAUSS JORDAN METHOD	Yes		
6.	GAUSS JACOBI METHOD	Yes		
7.	GUASS SIEDEL METHOD	Yes		
8.	PROBLEMS	Yes		
9.	INVERSE OF THE MATRIX BY GJM	Yes		
10.	EIGEN VALUE OF MATRIX BY POWER METHOD	Yes		
11.	EIGEN VALUE OF MATRIX BY GACOBI METHOD	Yes		
12.	PROBLEMS	Yes		
	UNIT II INTERPOLATION(FINITE D	IFFERENCE)		
13.	FINITE DIFFERENCE-FORWARD TABLE	Yes		
14.	FINITE DIFFERENCE-BACKWARD TABLE	Yes		
15.	PROBLEMS	Yes		
16.	NEWTONS FORWARD INTERPOLATION FORMULA	Yes		
17.	NEWTON BACKWARD INTERPOLATION	Yes	[T2]	
	FORMULA			
18.	NEWTON'S DIVIDED DIFFERENCE FORMULA	Yes		
19.	PROBLEMS	Yes		
20.	LAGRANGES INTERPOLATION FORMULA	Yes		
21.	INVERSE INTERPOLATION	Yes		
22.	STIRLINGS FORMULA	Yes		
23.	BESSELS FORMULAA	Yes		
24.	PROBLEMS	Yes		
UNIT III NUMERICAL DIFFERENTIATION AND INTEGRATION				
25.	NEWTONS FORWARD DIFFERENCE FORMULA TO GET THE DERIVATIVES	Yes		
26.	NEWTONS BACKWARD DIFFERENCE FORMULA TO GET THE DERIVATIVESW	Yes		
27.	TO FIND THE MAXIMA AND MINIMA OF A FUNCTION GIVEN THE TABULAR VALUES	Yes	[T3]	
28.	PROBLEMS	Yes]	
29.	NUMERICAL INTEGRATION	Yes		
30.	TRAPEZOIDAL RULE	Yes	4	
31.	SIMPSONS ONE THIRD AND THREE EIGTH RULE	Yes		

22		NOC				
52. 22		yes Yos				
		Yes				
54.	INTEGRATION	res				
35.	SIMPSONS BULF FOR DOUBLEINTEGRATION	Yes				
36.	PROBLEMS	Yes				
	UNIT IV INTIAL VALUE PROBLEMS FOR ODF					
37.	SOLUTIONS BY TAYLORS SERIES	Yes				
38.	TAYLORS SERIES-HIGHER ORDER	Yes				
	DIFFERENTIAL EQUATIONS		[T4]			
39.	EULERS AND MODIFIED EULERS METHOD	Yes				
40.	PROBLEMS	Yes				
41.	I AND II ORDER DIFFERENTIAL EQUATIONS	Yes				
42.	RUNGE KUTTA METHOD	Yes				
43.	RUNGE KUTTA METHOD-HIGHER ORDER DE	Yes				
44.	PROBLEMS	Yes				
45.	RK METHOD FOR SIMULTANEOUS FIRSR	Yes				
	ORDER EQUATION					
46.	MILENS PREDICTOR AND CORRECTOR	Yes				
	METHOD					
47.	ADAMS BASHFORTH PREDICTOR AND	Yes				
	CORRECTOR FORMULA					
48.	PROBLEMS	Yes				
UNIT V	UNIT V BOUNDARY VALUE PROBLEM FOR ODE AND PDE					
49.	CLASSIFICATION OF PDE OF SECOND ORDER	Yes				
50.	DIFFERENCE QUOTIENTS FORMULA	Yes				
51.	SOLUTION OF LAPALCE EQUATION	Yes				
52.	LIEBMANNS ITERATION PROCESS	Yes				
53.	PROBLEMS	Yes				
54.	DIAGONAL FIVE POINT FORMULA	Yes				
55.	STANDARD FIVE POINT FORMULA	Yes	- [TE]			
56.	PROBLEMS	Yes	ניז			
57.	BENDER SCHMIDT METHOD	Yes				
58.	CRANK NICHOLSON METHOD	Yes				
59.	HYPERBOLIC EQUATION	Yes				
60.	PROBLEMS	Yes				

Broad area : Eigen values, Interpolation, Numerical integration and Differentiation, Initial value problems for ODE, Boundary value problems for ODE and PDE.

Test Schedule

S. No.	Test	Tentative Date	Portions	Duration
1	Cycle Test-1	February 2 nd week	Session 1 to 14	2 Periods
2	Cycle Test-2	March 2 nd week	Session 15 to 28	2 Periods
3	Model Test	April 3 rd week	Session 1 to 45	3 Hrs
5	University Examination	ТВА	All sessions / Units	3 Hrs.

Mapping of Instructional Objectives with Program Outcome

To develop problem solving skills and understanding of Mathematics. This course emphasizes:		Correlates to program outcome		
	Н	М	L	
 To develop an understanding of the fundamentals in finding the solutions of the equation and to find the eigen vaue of the matrix 	b,c,d,j	a,f,k	e,g	
2. To develop the ability to solve problems in Interpolation	b,c,f	a,d,g,h	j	
3. To understand the concepts of Numerical Differentiation and Integration	a,d,e	b,g	j,k	
4. To develop students problem solving techniques for Initial value problems for ODE	a,d,e	b,g,h,k	f,j	
5. To learn the uses of Boundary value problems for ODE and PDE	а	a,b,c,d,g	j,k	

H: high correlation, M: medium correlation, L: low correlation **Draft Lecture Schedule** Teaching Strategies

Teaching Strategies

The teaching in this course aims at establishing a good fundamental understanding of the areas covered using:

- Formal face-to-face lectures
- Tutorials, which allow for exercises in problem solving and allow time for students to resolve problems in understanding of lecture material.
- Small periodic quizzes, to enable you to assess your understanding of the concepts.

Evaluation Strategies

Cvcle Test – I	-	5%
Cycle Test – II	-	5%
Model Test	-	10%
Assignment /		
Seminar / Online		
Test / Quiz	-	5%
Attendance	-	5%
Final exam	-	70%

Addendum

ABET Outcomes expected of graduates of B.Tech / MECH / program by the time that they graduate:

a) The ability to apply knowledge of mathematics, science, and engineering fundamentals.

b) The ability to identify, formulate and solve engineering problems.

c) The ability to design a system, component, or process to meet the desired needs within realistic constraints such as economic,

environmental, social, political, ethical, health and safety, manufacturability, and sustainability.

d) The ability to design and conduct experiments, as well as to analyze and interpret data

e) The ability to use the techniques, skills, and modern engineering tools necessary for engineering practice.

f) The ability to apply reasoning informed by the knowledge of contemporary issues.

g) The ability to broaden the education necessary to understand the impact of engineering solutions in a global, economic,

environmental, and societal context.

h) The ability to understand professional and ethical responsibility and apply them in engineering practices.

i) The ability to function on multidisciplinary teams.

j) The ability to communicate effectively with the engineering community and with society at large.

k) The ability in understanding of the engineering and management principles and apply them in project and finance

management as a leader and a member in a team.

I) The ability to recognize the need for, and an ability to engage in life-long learning.

Program Educational Objectives

PEO1: PREPARATION:

Mechanical Engineering graduatesare enthusiastic to provide strong foundation in mathematical, scientific and engineering fundamentals necessary to analyze, formulate and solve engineering problems in the field of Mechanical Engineering.

PEO2: CORE COMPETENCE:

Mechanical Engineering graduates have competence to enhance the skills and experience in defining problems in the field of Mechanical Engineering and Technology design and implement, analyzing the experimental evaluations, and finally making appropriate decisions.

PEO3: PROFESSIONALISM:

Mechanical Engineering graduates made competence to enhance their skills and embrace new thrust areas through self-directed professional development and post-graduate training or education.

PEO4: PROFICIENCY:

Mechanical Engineering graduates became skilled to afford training for developing soft skills such as proficiency in many languages, technical communication, verbal, logical, analytical, comprehension, team building, inter personal relationship, group discussion and leadership skill to become a better professional.

PEO5: ETHICS:

Mechanical Engineering graduates are morally merged to apply the ethical and social aspects of modern Engineering and Technology innovations to the design, development, and usage of new products, machines, gadgets, devices, etc.

Course Teacher	Signature
G.Subashini	
Mr.Pari	
Ms.Arthi	

Course Coordinator HOD/MECH Ms.Arthi