BME401 – DYNAMICS OF MACHINES

Academic Course Description

BHARATH UNIVERSITY Faculty of Engineering and Technology Department of Mechanical Engineering BME401 – DYNAMICS OF MACHINES Fourth Semester, 2015-16 (Even Semester)

Course (catalog) description

- > To understand the method of static force analysis and dynamic force analysis of mechanisms.
- > To study the undesirable effects of unbalances in rotors and engines.

Compulsory/Elective course	: Compulsory
Credit & contact hours	: 4 & 60
Course Coordinator	: Mr.Golden Ranjith Nimal

:

Instructors

Name of the	Class	Office	Office	Email (domain:@	Consultation
instructor	handling	location	phone	bharathuniv.ac.in	
R.Karthikeyan	II-A	JR001		karthikeyan.mech@	9.00 - 9.50 AM
				bharathuniv.ac.in	
G.Anbazhagan	II-B	JR002		anbazhaganmech@	9.50-10.40 AM
				bharathuniv.ac.in	
R.Sabarish	II-C	JR003		sabarish.mech@	11.40 -12.30 PM
				bharathuniv.ac.in	
Jose anand vino V	II-D	JR004		anandvinovj258@gmail.com	10.50 - 11.40
					AM
R.Hariharan	II-E	SK001		hariharan.mech@	9.00 - 9.50 AM
				bharathuniv.ac.in	

Relationship to other courses:

Pre – requisites : Mathematics I & II

Assumed knowledge : To understand the method of static force analysis and dynamic force analysis of mechanisms. To study the undesirable effects of unbalances in rotors and engines.

Following courses : Machine Design, Advanced Vibration, Vibration control & Monitoring

Syllabus Contents

UNIT I FORCE ANALYSIS OF MECHANISM

Static, Inertia and combined force analysis- Graphical and analytical method- Slider crank mechanism and four bar mechanism. Turning moment diagram and flywheel-Applications in engine, Punching presses.

UNIT II BALANCING

Static and dynamic balancing-Balancing of rotating masses- Balancing of several masses in different planes. Primary and secondary unbalanced forces of reciprocating parts-Balancing of in line engines- Firing order-Balancing of 'V' and 'W' engines.

UNIT III FREE VIBRATIONS OF SINGLE DEGREE OF FREEDOM SYSTEMS

Fundamentals of vibrations-Undammed free vibrations of single d.o.f systems–Derivation & solution of differential equation-Torsional Vibrations-single rotor- Equivalent stiffness of spring combinations-Bifilar, Trifilar suspensions-Compound pendulum-Types of damping-Damped free vibrations of single d.o.f-over, critical, under damped-Damping coefficient - Critical damping coefficient-Logarithmic decrement

UNIT IV FORCED VIBRATIONS OF SINGLE DEGREE OF FREEDOM SYSTEMS 12

Forced vibrations with-Constant harmonic excitation-Rotating & Reciprocating unbalance-Excitation of the support-Energy dissipated by damping-Forced vibrations with coulomb, viscous damping-Vibration Isolation and Transmissibility- Vibration Absorbers

UNIT V CRITICAL SPEEDS AND SHAFTS WITH ROTORS

Lateral vibration of beams - Whirling speed of shaft - Shafts with two & three rotors-Geared system. Dunkerly's method for different types of beams & shaft with several loads.

TOTAL 45 HOURS

TEXT BOOKS:

- 1. R.S.Khurmi-Theory of Machines-S.Chand Publications.
- 2. S.S.Rattan-Theory of Machines- Tata McGraw Hill, 2005.

REFERENCES:

- 1. Rao.J.S. and Dukkipatti, Mechanism and Machines Theory, 2nd Edition-Wiley Eastern Ltd, 1992.
- 2. Groover.G.K. Mechanical Vibrations- Nemchand & Bros., 2001.
- 3. Singh.V.P. Mechanical Vibrations-Dhanpatrai & co (p) Ltd, 2005.
- 4. royalmechanicalbuzz.blogspot.com/.../theory-of-machines-by-rs-khurmi...

12

12

12

Computer usage:

Professional component

-		
General	-	0%
Basic Sciences	-	0%
Engineering sciences & Technical arts	-	0%
Professional subject	-	100%

Broad area: Dynamics, Vibration Analysis in machines

Test Schedule

S. No.	Test	Tentative Date	Portions	Duration
1	Cycle Test-1	February 2 nd week	Session 1 to 14	2 Periods
2	Cycle Test-2	March 2 nd week	Session 15 to 28	2 Periods
3	Model Test	April 3 rd week	Session 1 to 45	3 Hrs
5 1	University Examination Cycle Test-1	TBA February 2 nd week	All sessions / Units Session 1 to 14	3 Hrs. 2 Periods

Mapping of Instructional Objectives with Program Outcome

	(Correlat	tes to	
Student Outcomes (SOs) from Criterion 3 covered by this Course		program outcome		
	Н	Μ	L	
 Upon completion of this course, the Students can able to predict the force analysis in Mechanisms 	a,c,l	b	f,g,h,I,j,k,	
2. Learn about the mechanical system and related vibration issues.	a,c,l	b	f,g,h,i	
3. Can be able to solve mechanical system problem.	a	b,c		
4. Understand static and dynamic balancing	a,c	b	f,g,h,i	
5. Understand the application of degrees of freedom and vibrations	a,c,l	b		
6. Understand critical speed of shafts	a,c,l	b	f,g,h,i	

H: high correlation, M: medium correlation, L: low correlation

Draft Lecture Schedule

S.NO	Topics	Problem solving (Yes/No)	Text / Chapter		
	UNIT I FORCE ANALYSIS OF N				
1.	Static Force Analysis	No			
2.	Four bar mechanism showing external and constraint forces	Yes			
3.	Free-body diagram	No			
4.	Equilibrium of three-force member	Yes			
5.	Graphical method	No			
6.	Static force analysis with friction	Yes			
7.	Inertia force analysis with friction	Yes	T1 & R2		
	Free Body diagram of slider	Yes	11 & K2		
8.					
9.	Gear force Analysis	Yes			
10.	three force members- related problems	Yes			
11.	Turning moment diagram and flywheel	Yes			
12.	Punching press	No			
	UNIT II BALANCI	NG			
13.	Static and dynamic balancing	No			
14.	Balancing of Rotating Masses	Yes			
15.	Balancing of several masses	Yes			
16.	Primary unbalanced force of reciprocating parts	Yes			
17.	Secondary unbalanced force of reciprocating parts	Yes			
18.	Unbalance in several Planes	No			
	Balanced force – unbalanced moments	No	T1 & R3		
19.					
20.	effect of balancing on shaking and pin forces	Yes			
21.	Analysis of Static Unbalance	Yes			
22.	Analysis of Dynamic Unbalance	Yes			
23.	Firing order	Yes			
24.	Balancing of V and W engines	Yes			
	NIT III FREE VIBRATIONS OF SINGLE DEGR		YSTEMS		
25. 26.	Single Degree of Freedom (SDOF) System Undamped Free Vibration	No Yes			
20.	Damped Free Vibration	Yes			
28.	Fundamental of vibrations	No			
29.	Torsional vibrations and single rotor	Yes			
30.	Typical Response in Damped Harmonic Forced Vibration	No			
31.	Derivation and solution of differential equation	Yes	T2 & R1		
32.	Equivalent stiffness of spring combinations- Bifilar	Yes	12 W NI		
33.	Trifilar suspensions				
34.	Damping coefficient	Yes			
35.	Critical damping coefficient	No			
36.	Logarithmic decrement	No			

UNIT IV FORCED VIBRATIONS OF STAGLE DEGREE OF FREEDOM SYSTEMS

37.	Steady state response due to Harmonic Oscillation	No		
38.	Harmonic Force from Imbalance Excitation	Yes	—	
39.	Rotating imbalance, Random forcing	Yes		
40.	Periodic forcing, Impulse response function	No	—	
41.	Rotating unbalance	Yes		
42.	Reciprocating unbalance	Yes		
43.	Energy dissipated by damping	No		
44.	Excitation by Forces with Arbitrary Time Function	Yes	T1,T2 & R3	
45.	Forced vibration with coulomb	Yes		
46.	Viscous damping	No		
47.	Vibration isolation and transmissibility	Yes	_	
48.	Vibration absorbers	No		
	UNIT V CRITICAL SPEEDS AND SHA	FTS WITH ROI	ORS	
49.	Whirling of shafts	Yes		
50.	Rayleigh's Method	Yes		
51.	Dunkerley's Empirical Method	No		
52.				
	Critical speed of shafts	Yes		
53.	Lateral vibrations of beams	Yes Yes		
53. 54.				
	Lateral vibrations of beams	Yes		
54.	Lateral vibrations of beams Combined loading	Yes Yes		
54. 55.	Lateral vibrations of beams Combined loading A Single-DOF Damped Rotor Model	Yes Yes No		
54. 55. 56.	Lateral vibrations of beams Combined loading A Single-DOF Damped Rotor Model Suppression of Critical Speeds	Yes Yes No Yes		
54. 55. 56. 57.	Lateral vibrations of beams Combined loading A Single-DOF Damped Rotor Model Suppression of Critical Speeds Shaft with two rotors- geared system	Yes Yes No Yes Yes	T1 & R2,R3	

Teaching Strategies

The teaching in this course aims at establishing a good fundamental understanding of the areas covered using:

- Formal face-to-face lectures
- Tutorials, which allow for exercises in problem solving and allow time for students to resolve problems in understanding of lecture material.
- Laboratory sessions, which support the formal lecture material and also provide the student with practical construction, measurement and debugging skills.
- Small periodic quizzes, to enable you to assess your understanding of the concepts.

Cycle Test – I	-	5%
Cycle Test – II	-	5%
Model Test	-	10%
Assignment /		
Seminar / Online		
Test / Quiz	-	5%
Attendance	-	5%
Final exam	-	70%

Prepared by R.Hariharan

Addendum

ABET Outcomes expected of graduates of B.Tech / MECH / program by the time that they graduate:

a) The ability to apply knowledge of mathematics, science, and engineering fundamentals.

b) The ability to identify, formulate and solve engineering problems.

c) The ability to design a system, component, or process to meet the desired needs within realistic constraints such as economic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability.

d) The ability to design and conduct experiments, as well as to analyze and interpret data

e) The ability to use the techniques, skills, and modern engineering tools necessary for engineering practice.

f) The ability to apply reasoning informed by the knowledge of contemporary issues.

g) The ability to broaden the education necessary to understand the impact of engineering solutions in a global, economic,

environmental, and societal context.

h) The ability to understand professional and ethical responsibility and apply them in engineering practices.

- i) The ability to function on multidisciplinary teams.
- j) The ability to communicate effectively with the engineering community and with society at large.

k) The ability in understanding of the engineering and management principles and apply them in project and finance

management as a leader and a member in a team.

I) The ability to recognize the need for, and an ability to engage in life-long learning.

Program Educational Objectives

PEO1: PREPARATION:

Mechanical Engineering graduatesare enthusiastic to provide strong foundation in mathematical, scientific and engineering fundamentals necessary to analyze, formulate and solve engineering problems in the field of Mechanical Engineering.

PEO2: CORE COMPETENCE:

Mechanical Engineering graduates have competence to enhance the skills and experience in defining problems in the field of Mechanical Engineering and Technology design and implement, analyzing the experimental evaluations, and finally making appropriate decisions.

PEO3: PROFESSIONALISM:

Mechanical Engineering graduates made competence to enhance their skills and embrace new thrust areas through self-directed professional development and post-graduate training or education.

PEO4: PROFICIENCY:

Mechanical Engineering graduates became skilled to afford training for developing soft skills such as proficiency in many languages, technical communication, verbal, logical, analytical, comprehension, team building, inter personal relationship, group discussion and leadership skill to become a better professional.

PEO5: ETHICS:

Mechanical Engineering graduates are morally merged to apply the ethical and social aspects of modern Engineering and Technology innovations to the design, development, and usage of new products, machines, gadgets, devices, etc.

BME401 – DYNAMICS OF MACHINES

Course Teacher	Signature
R.Hariharan	
R.Karthikeyan	
R.Sabarish	
Jose anand vino V	
G.Anbazhagan	

Course Coordinator Mr.Golden Ranjith Nimal **HOD/MECH**