Academic Course Description

BHARATH UNIVERSITY Faculty of Engineering and Technology Department of Mechanical Engineering BME 604- CAD/CAM Sixth Semester, 2016-17 (EVEN Semester)

Course (catalog) description

This course will enable the student to gain knowledge about the basic fundamentals of CAD. **Compulsory/Elective course** : Compulsory

Credit & contact Hours	:	3 & 45

Course Coordinator : Dr.Balambika

:

Instructors

Name of the instructor	Class handlin	Office location	Office phone	Email (domain:@ bharathuniv.ac.in	Consultation
	g				
Mr. N. Lenin	IV Year	JR 001,	9789917001	leninrakesh.mech@bharathuniv.ac.in	9.00 to 9.50
Rakesh	Mech,	JK 001,	9709917001	lemmakesn.meen@bharathumv.ac.m	am
Mr. Arun V Rejus	IV Year	JR 002	9789492493	Karthikayan maah@hharathuniy aa in	10.50 to
Kumar	Mech,	JK 002	9709492493	Karthikeyan.mech@bharathuniv.ac.in	11.40
Mr. S.Nakeeran	IV Year	JR 003	9445126016	Nakeeran.mech@bharathuniv.ac.in	11.40 to
IVII. S.INAKEETAII	Mech,	JR 004	9443120010	Nakeeran.meen@bharathumv.ac.m	12.30
Mrs.C.M.	IV Year	JR 101	9500015643	meenakshi.mech@bharathuniv.ac.in	9.50 to 10.40
Meenakshi	Mech,	JR 102	9300013045 meenaksm.mecn@bharathumiv.ac.m		9.30 10 10.40

Relationship to other courses:

Pre – requisites : Manufacturing Technology-I

:

Assumed knowledge : To gain knowledge on how computers are integrated at various levels of planning and manufacturing understand computer aided planning and control and computer monitoring.

Following courses

Syllabus Contents

UNIT I INTRODUCTION TO CAD AND ITS ELEMENTS

Principles of Computer hardware, Software and Operating System, application Programs, Data Handling and File Structures, Computer aid in Phases of design- Development of Design Database using CAD Systems-Conceptual Design Process Analysis Optimization- Detailed Design and Documentation.

UNIT II ELEMENTS OF CAD SYSTEMS AND DESIGN USING COMPUTERS 9

Elements of CAD Systems, Introduction to Graphic Hardware, Software, Details of 2D Software Packages-Layering, Drawing Primitives, Display Techniques, Editing, utilities, Scaling, Dimensioning, 3D Visualization, Geometric Modeling-Wireframe and Solid models.

UNIT III DESIGN USING COMPUTERS

Design of Gears, Couplings, Flywheels, Shafts Connecting Rods etc. Software for Vibration Problems-Stress Analysis, Kinematic Analysis, Dynamic Analysis.

UNIT IV COMPUTER AIDED MANUFACTURING

Numerical Control- Modes- NC Elements- NC Machine Tools- CNC Machines- CNC Hardware Basics-CNC Tooling- CNC Machine Tools and Control System- Part Programming- Manual and Computer Aided-Turning Center Programming- Advanced Part Programming- Direct Numerical Control- Adaptive Control-Computer Aided Part Programming, APT. Introduction to Robotics, Group Technology, Computer Aided Process Planning, FMS.

UNIT V COMPUTER INTEGRATED MANUFACTURING

CIM as a Concept and a Technology- CASA/SME Model of CIM-Benefits- Communication Matrix in CIM-Fundamentals of Computer Communication n CIM, CIM Data Transmission Method, Serial, parallel, asynchronous, modulation, Demodulation, Simplex and Duplex- Types of Communications in CIM- Point to Point, Star and Multiplexing- CIM for Batch Production- Group Technology – FMS- Process Control in CIM- Characteristics of Manufacturing Process Data- Continuous, Analog, Discrete Binary and Pulse Data-ADC/DC Multiplexers, Process Monitoring Through Computer- Types of Computer Process Control-Preplanned, Direct Digital Control (DDC)- Regular Control and Feed Forward Control, Requirements of Control Programming Interrupt, Real Time Clock Input.

TEXT BOOKS:

1. Radhakrishnan P. CAD/CAM/CIM, I Edition, New central Book Agency, 2006.

REFERENCES:

- 1. Rao P.N. CAD/CAM, Principles and Application, Tata McGraw Hill, 2005.
- 2. Mikell P.Groover, Automation, Production Systems and CIM, II Edition, Prentice Hall of India, 2001.
- 3. Chris McMahon and Jimmy Browne, CAD/CAM, Pearson Education, 2001.
- 4. sbmpme.blogspot.com/2011/01/cad-cam-cim-p-radhakrishnan.html

Computer usage: Nil

Professional component

General	-	0%
Basic Sciences	-	0%
Engineering sciences & Technical arts	-	0%
Professional subject	-	100%

Broad area: Computer Integrated Manufacturing

9

9

9

			Reference
S.NO	Topics	Problem solving	
		(Yes/No)	

Test Schedule

S. No.	Test	Tentative Date	Portions		Dura	tion
1	Cycle Test-1	February 2 nd week	Session 1 to 14		2 Per	iods
2	Cycle Test-2	March 2 nd week	Session 15 to 28	;	2 Periods	
3	Model Test	April 3nd week	Session 1 to 45		3 Hrs	
4	UniversityTBA4ExaminationTBAAll sessions / Units			ts	3 Hrs.	
This course will enable the student To gain knowledge about the basic					Correlates to program outcome	
fundamentals of CAD.			Н	Μ	L	
1. To gain knowledge on how computers are integrated at various levels of planning and manufacturing understand computer aided planning and control and computer monitoring.			a, b	i	1	
2. Understand the concepts of CAD/CAM						
3. Understand writing programs			c, f	g, h	1	
4. Understand to give command			d	g, k	1	
5. Learn to draw 2D drawings						
6. Learn to do 3D modeling					1	

Mapping of Instructional Objectives with Program Outcome

H: high correlation, M: medium correlation, L: low correlation

Draft Lecture Schedule

Unit 1	INTRODUCTION TO CAD AND ITS ELE	MENTS		
1.	Principles of Computer hardware	No		
2.	Software and Operating System	No		
3.	application Programs	No		
4.	Data Handling and File Structures	No		
5.	Computer aid in Phases of design	No		
6.	Development of Design Database using CAD Systems	No		
7.	Conceptual Design Process Analysis Optimization	No	[T1]	
8.	Detailed Design	No	[R2]	
9.	Detailed Documentation	No	[]	
UNIT II	ELEMENTS OF CAD SYSTEMS AND DESIGN USIN	IG COMPUTERS		
10.	Elements of CAD Systems	No		
11.	Introduction to Graphic Hardware and Software	No		
12.	Details of 2D Software Packages	No		
13.	Layering	No		
14.	Drawing Primitives	No	1	
15.	Display Techniques	No		
16.	Editing	No	[T1] [R2]	
17.	utilities, Wireframe and Solid models	No		
18.	Scaling, Dimensioning, 3D Visualization	No	-	
UNIT III	DESIGN USING COMPUTERS			
19.	Design of Gears	No		
20.	Design of Couplings	No	-	
21.	Design of Flywheels	No		
22.	Design of Shaft	No		
23.	Design of Connecting Rod	No		
24.	Software for Vibration Problems	Yes	[T1],[R2]	
25.	Stress Analysis	Yes	-	
23.	Kinematic Analysis		-	
		Yes	_	
27.	Dynamic Analysis.	Yes		
UNIT IV 28.	COMPUTER AIDED MANUFAC Numerical Control- Modes- NC Elements	IURING No		
20. 29.	NC Machine Tools	No	-	
30.	CNC Machines- CNC Hardware Basics	No	-	
31.	CNC Tooling- CNC Machine Tools and Control		-	
	System	No		
32.	Part Programming - Manual	No		
33.	Part Programming- Computer	No	[T1]	
34.	Turning Center Programming	No	[R2]	
35.	Computer Aided Part Programming	No		
36.	Computer Aided Process Planning	No		
UNIT V	COMPUTER INTEGRATED MAN			
37.	CIM as a Concept and a Technology	No		
38.	CASA/SME Model of CIM-Benefits	No		
39.	Communication Matrix in CIM	No		
40.	Fundamentals of Computer Communication in CIM	No		

41.	CIM Data Transmission Method, Serial , parallel, asynchronous, modulation, Demodulation	No	[[T1] [R2]
42.	Simplex and Duplex- Types of Communications in CIM- Point to Point, Star and Multiplexing	No	
43.	Discrete Binary and Pulse Data- ADC/DC Multiplexers	No	
44.	Direct Digital Control (DDC)- Regular Control and Feed Forward Control	No	
45.	Requirements of Control Programming Interrupt, Real Time Clock Input.	No	

Teaching Strategies

The teaching in this course aims at establishing a good fundamental understanding of the areas covered using:

- Formal face-to-face lectures
- Tutorials, which allow for exercises in problem solving and allow time for students to resolve problems in understanding of lecture material.
- Laboratory sessions, which support the formal lecture material and also provide the student with practical construction, measurement and debugging skills.
- Small periodic quizzes, to enable you to assess your understanding of the concepts.

Evaluation Strategies

Cycle Test – I	-	5%
Cycle Test – II	-	5%
Model Test	-	10%
Assignment /		
Seminar / Online		
Test / Quiz	-	5%
Attendance	-	5%
Final exam	-	70%

Addendum ABET Outcomes expected of graduates of B.Tech / MECH / program by the time that they graduate:

a) The ability to apply knowledge of mathematics, science, and engineering fundamentals.

b) The ability to identify, formulate and solve engineering problems.

c) The ability to design a system, component, or process to meet the desired needs within realistic constraints such as economic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability.

d) The ability to design and conduct experiments, as well as to analyze and interpret data

e) The ability to use the techniques, skills, and modern engineering tools necessary for engineering practice.

f) The ability to apply reasoning informed by the knowledge of contemporary issues.

g) The ability to broaden the education necessary to understand the impact of engineering solutions in a global, economic, environmental, and societal context.

h) The ability to understand professional and ethical responsibility and apply them in engineering practices.

i) The ability to function on multidisciplinary teams.

j) The ability to communicate effectively with the engineering community and with society at large.

k) The ability in understanding of the engineering and management principles and apply them in project and finance

management as a leader and a member in a team.

1) The ability to recognize the need for, and an ability to engage in life-long learning.

Program Educational Objectives

PEO1: PREPARATION:

Mechanical Engineering graduates are enthusiastic to provide strong foundation in mathematical, scientific and engineering fundamentals necessary to analyze, formulate and solve engineering problems in the field of Mechanical Engineering.

PEO2: CORE COMPETENCE:

Mechanical Engineering graduates have competence to enhance the skills and experience in defining problems in the field of Mechanical Engineering and Technology design and implement, analyzing the experimental evaluations, and finally making appropriate decisions.

PEO3: PROFESSIONALISM:

Mechanical Engineering graduates made competence to enhance their skills and embrace new thrust areas through selfdirected professional development and post-graduate training or education.

PEO4: PROFICIENCY:

Mechanical Engineering graduates became skilled to afford training for developing soft skills such as proficiency in many languages, technical communication, verbal, logical, analytical, comprehension, team building, inter personal relationship, group discussion and leadership skill to become a better professional.

PEO5: ETHICS:

Mechanical Engineering graduates are morally merged to apply the ethical and social aspects of modern Engineering and Technology innovations to the design, development, and usage of new products, machines, gadgets, devices, etc.

BME 604- CAD/CAM

Course Teacher Mr. N. Lenin Rakesh	Signature
Mr. Arun V Rejus Kumar	
Mr. S.Nakeeran	
Mrs.C.M.Meenakshi	

Course Coordinator Dr.Balambika

HOD/MECH