~	•			- 1		
Course	◣	nm	30r	and		ama
1 01115			75	a	1 7	anc

BME010 - ADVANCED TURBO MACHINES

Credits and Contact Hours

3&45

Course Coordinator's Name

Mr.Thirumavalavan

Text Books and References

TEXTBOOKS:

- 1. S.M. Yahya Turbines, Compressors and Fans Tata McGraw Hill Publishing Company, 2005.
- 2. V.Ganesan Gas Turbines Tata McGraw Hill Publishing Company, New Delhi- 2003.

REFERENCES:

- 1. Earl Logan Jr, Ramendra Roy., Handbook of Turbo Machinery., CRC Press.
- 2. https://books.google.co.in/books/about/Advanced_topics_in_turbomachinery_techno.html?id=qs9QAAAAYAAJ&redir_esc=y

Course Description

To develop skilled manpower in the field of turbo machines with the knowledge of transport processes through the turbo machine passage, analytical, numerical and experimental tools for design, operation, performance evaluation and innovative research in the area of turbo machines"

Prerequisites	Co-requisites							
MACHINE DESIGN, MANUFACTURING	Nil							
TECHNOLOGY								
required, elective, or selected elective (as per Table 5-1)								
Core elective								

Course Outcomes (COs)

Course Outcomes (COs)							
CO1	Understand the performance evaluation, operation and maintenance of rotodynamic						
	machines.						
CO2	Will have knowledge on conceptual design of different components of thermal and						
	hydroturbomachines.						
CO3	Design and develop turbomachineries						
CO4	Learn the principle of machineries						
CO5	Learn axial and radial flow turbines						
CO6	Learn the principles and application of turbines						

S	Student Outcomes (SOs) from Criterion 3 covered by this Course												
	COs/SOs	a	b	С	d	e	f	g	h	i	j	k	1
	CO1												
	CO2	Н	Н							М			
	CO3		Н				М				М	Н	
	CO4	Н											Н
	CO5		Н				М						
	CO6												Н

List of Topics Covered

UNIT I PRINCIPLES

Energy transfer between fluid and rotor, classification of fluid machinery, dimensionless parameters, specific speed, applications, stage velocity triangles, work and efficiency for compressors and turbines.

9

9

9

9

UNIT II IMPELLER BLADES

Types, stage and design parameters, flow analysis in impeller blades, Volute and diffusers, losses, characteristics curves and selection, fan drives and fan noise.

UNIT III CENTRIFUGAL COMPRESSOR

Construction details, types, impeller flow losses, slip factor, diffuser analysis, losses and performance curves.

UNIT IV AXIAL FLOW COMPRESSOR

Stage velocity triangles, enthalpy-Entropy diagrams, stage losses and efficiency, work down factor, simple stage, design problems and performance characteristics.

UNIT V AXIAL AND RADIAL FLOW TURBINES

Stage velocity diagrams, reaction stages, losses and coefficients, blade design principles, testing and performance characteristics.