Course Nun	nber and Name						
BGE006 – I	POWER PLANT ENGINEERING						
Credits and	Contact Hours						
3&45							
Course Coo	rdinator's Name						
Mr.Thiruma	avalavan						
Text Books	and References						
TEXT BOOK:							
1. P.K.Nag	g-Power plant Engineering-Tata McGr	aw Hill publishers, 2008					
REFERENCES	:						
1. G.R.Nagpal- Power plant Engineering-Khanna publishers, Delhi, 1998							
2. G.D.Rai-N	on Conventional sources of Energy, 2004	l.					
3.G.D.Rai-Po	wer plant Engineering, Khanna publisher	s, 2000.					
4.https://me	emechanical engineering .files.wordpress.c	com//power-plant- eng					
Course Desc	cription						
	*	nd applications of different types of power plants .					
	Prerequisites	Co-requisites					
BASIC MEC	CHANICAL ENGINEERING						
	required, elective, or select	ed elective (as per Table 5-1)					
Non Major	Elective						
Course Outo	comes (COs)						
CO1	Student learns the steam power plant						
CO2	Student learns the working of generators						
CO3	Student learns the working of turbines						
CO4	Student learns the principle of working in wind energy and wind mills						
CO5	Student learns the solar energy						
CO6	Student understands the economics	of power generation					

S	Student Outcomes (SOs) from Criterion 3 covered by this Course													
	COs/SOs	a	b	c	d	e	f	g	h	i	j	k	1	
	CO1	Н												
	CO2			Н		L				Н		L		
	CO3	Н					М							
	CO4			Н		L		М					L	
	CO5									Н				
	CO6	Н				L							L	

List of Topics Covered

UNIT I STEAM POWER PLANT

9

9

Various components ,types of firing systems-pulverized fuel, tilting and tangential systems, fluidized bed combustion system, coal handling systems-crushers, feeders, ash handling system-Dust collectors ID and FD fans-flue stack, Feed pumps, Economizers, Air preheaters, Super heaters, Reheaters, Condensers-Types.

UNIT II STEAM GENERATORS AND POWER CYCLES 9

Boilers-types-Boiler efficiencies, combustion calculations, equivalent evaporation, Boiler power, cooling towers-tower characteristics. Review of Rankine cycle-reheat, regeneration with open and closed type of feed water heaters and their representation in T-S diagram

UNIT III NUCLEAR, HYDEL AND GAS TURBINE POWER PLANTS9 Nuclear energy, Fission, Fusion reaction, chain reaction, parts and types, waste disposal and safety in nuclear plants, Hydel plants-classification, selection of turbines, pumped storage system, performance evaluation of turbines. Gas turbine plants-open and closed cycles-combined cycle plants and their representation in T-S diagram

UNIT IV NON CONVENTIONAL ENERGY BASED POWER PLANTS

Wind energy, wind mills, wind forming, site selection and limitation, tidal power plants, solar energy-Various solar power energy systems, geothermal energy, Fuel cells, thermionic and thermo electric converters, magneto hydro dynamic plant.

UNIT V ECONOMICS OF POWER GENERATION

Load duration curves, power plant economics, fixed and operating costs, Load sharing and plant selection, Economical comparison of various power plants and co-generation. Environmental consideration of various power plants-CO₂, SO₂, NOx and particulate emissions and their control