Course Number and Name

BPH101 - ENGINEERING PHYSICS I

Credits and Contact Hours

3 & 45

Course Coordinator's Name

Dr.Srilatha

Text Books and References

TEXT BOOKS:

- 1. Jayaraman D Engineering Physics I. Global Publishing House, 2014.
- 2. Arumugam M. Engineering Physics. Anuradha publishers, 2010.
- 3. Gaur R.K. and Gupta S.L. Engineering Physics. Dhanpat Rai Publishers, 2009.
- 4. Mani Naidu S. Engineering Physics, Second Edition, PEARSON Publishing, 2011.

REFERENCES:

- 1. Searls and Zemansky. University Physics, 2009
- 2. Marikani A. Engineering Physics. PHI Learning Pvt., India, 2009.
- 3. Palanisamy P.K. Engineering Physics. SCITECH Publications, 2011.
- 4. <u>http://ocw.mit.edu/courses/find-by-topic</u>
- 5. <u>http://nptel.ac.in/course.php?disciplineId=122</u>
- 6. <u>https://en.wikipedia.org/wiki/Engineering_physics</u>

Course Description

To enhance the fundamental knowledge in Physics and its applications relevant to various streams of Engineering and Technology

	Prerequisites	Co-requisites						
+ 2 Level Phy	vsics	Nil						
required, elective, or selected elective (as per Table 5-1)								
Required								
Course Outcomes (COs)								
CO1	Understand the Principles and Laws of Physics							
CO2	To understand the impact of Crystal Physics							
CO3	Learn the Properties of Elasticity and Heat transfer.							
CO4	Acquire Knowledge on Quantum Physics.							
CO5	Understand the concepts on Laser & Ultrasonic's and its Applications							
CO6	Understand the Principle of La Medicine.	ser and its Applications in Engineering						

	Student Outcomes (SOs) from Criterion 3 covered by this Course													
	COs/SOs	а	b	с	d	e	f	g	h	i	j	k	1	
	CO1	Н						М			Н			
	CO2		L	Н		М				М		L	Н	
	CO3													
	CO4	Н		М	L						L		Μ	
	CO5		L	L								L	L	
	CO6													
List of Topics Covered														

UNIT I CRYSTAL PHYSICS

Lattice – Unit cell – Bravais lattice – Lattice planes – Miller indices – d spacing in cubic lattice – Calculation of number of atoms per unit cell – Atomic radius – Coordination number – Packing factor for SC, BCC, FCC and HCP structures – Diamond and graphite structures (qualitative treatment)- Crystal growth techniques –solution, melt (Bridgman and Czochralski) and vapour growth techniques (qualitative)

UNIT II PROPERTIES OF MATTER AND THERMAL PHYSICS

Elasticity-Hooke's law - Relationship between three modulii of elasticity (qualitative) – stress -strain diagram – Poisson's ratio –Factors affecting elasticity –Bending moment – Depression of a cantilever – Young's modulus by uniform bending- I-shaped girders Modes of heat transfer- thermal conductivity-Newton's law of cooling - Linear heat flow – Lee's disc method – Radial heat flow – Rubber tube method – conduction through compound media (series and parallel).

UNIT III QUANTUM PHYSICS

Black body radiation – Planck's theory (derivation) – Deduction of Wien's displacement law and Rayleigh – Jeans' Law from Planck's theory – Compton effect. Theory and experimental verification – Properties of Matter waves – G.P Thomson experiment-Schrödinger's wave equation – Time independent and time dependent equations – Physical significance of wave function – Particle in a one dimensional box - Electron microscope - Scanning electron microscope - Transmission electron microscope.

UNIT IV ACOUSTICS AND ULTRASONICS

Classification of Sound- decibel- Weber–Fechner law – Sabine's formula- derivation using growth and decay method – Absorption Coefficient and its determination –factors affecting acoustics of buildings and their remedies. Production of ultrasonics by magnetostriction and piezoelectric methods - acoustic grating -Non Destructive Testing – pulse echo system through transmission and reflection modes - A,B and C – scan displays, Medical applications – Sonogram.

UNIT V PHOTONICS AND FIBRE OPTICS

9

9

9

9

9

Spontaneous and stimulated emission- Population inversion – Einstein's A and B coefficients - derivation.

Types of lasers – Nd:YAG, CO2, Semiconductor lasers (homo junction & hetero junction)- Industrial and Medical Applications. Principle and propagation of light in optical fibres – Numerical aperture and Acceptance angle - Types of optical fibres (material, refractive index, mode) – attenuation, dispersion, bending - Fibre Optical Communication system (Block diagram) - Active and passive fibre sensors-Endoscope. .