Course Number and Name

BMA401 - NUMERICAL METHODS

Credits and Contact Hours

4 & 75

Course Coordinator's Name

Ms.Arthi

Text Books and References

TEXT BOOKS:

- 1. Sastry.SS "Introductory Numerical Methods" PHI, 2010
- 2. Jain K.K. Iyengar, S.R.K and Jain, R.K. "Numerical Methods for Scientific and Engineering Computation" 3rd edition, New Age International Publications and Co. 1993.

REFERENCES:

- 1. Grewal, B.S. "Higher Engineering Mathematics (36th edition)" Khanna Publication Delhi 2001.
- 2. M.K. Venkatraman, "Numerical Methods", NPC, Chennai.
- 3. Curtis F.Gerald. "Applied Numerical Analysis" 7th Edn. Pearson Education, Chennai-600113. 2007
- 4. Dennis G.Zill and Warren S.Wright. "Advanced Engineering Mathematics". 3rd Edn. Jones & Bartlett Publishers, UK. 1992.

Course Description

To train the students with Mathematical techniques to solve problems in Engineering

	Prerequisites	Co-requisites								
Mathematics I	, &	Nil								
ne mained a la stiene en esta de la stiene (se men Table 5-1)										
required, elective, or selected elective (as per Table 5-1)										
Required										
Course Outcomes (COs)										
CO1	solves a single equation and a system of linear equations by different methods and									
	get exact solution and iterative solution.									
CO2	Interpolate a dependent variable based on a given set of values by a suitable method.									
CO3	Find integral value and differential coefficient based on a given set of values.									
CO4	Solve initial value problem of ODE and boundary value problems of PDE.									
CO5	Will be able to solve eigen value pro	blems								
CO6	Understand the application of c engineering.	lifferentiation and integration in various fields of								

St	Student Outcomes (SOs) from Criterion 3 covered by this Course												
	COs/SOs	a	b	с	d	e	f	g	h	i	j	k	1
	CO1	Н	М	Н			L	L	L	L	L	L	Н
	CO2	Н	М	Н			L	L	L	L			Н
	CO3	Н	М	М									
	CO4	Н	М	Н			L	L	L	L			
	CO5	Н	М	Н									Н
	CO6	Η	М	Н			L	L	L	L			Н
List of Topics Covered													

UNIT-1: SOLUTION OF EQUATIONS AND EIGEN VALUE PROBLEMS

Iterative method, Newton–Raphson methods for single variable- Solutions of linear system by Gaussian, Gauss-Jordan, Jacobian and Gauss-Siedel methods, Inverse of Matrix by Gauss Jordan method, Eigen value of a Matrix power and Jacobian methods.

9+6

9+6

9+6

9+6

UNIT-II: INTERPOLATION(FINITE DIFFERENCES)

Newton's Divided Difference Formula, Lagrange's Interpolation-Forward and Backward Difference Formula-Stirling's and Bessel's Central Difference Formula.

UNIT-III : NUMERICAL DIFFERENTIATION AND INTEGRATION

Numerical Differentiation with interpolation polynomials, Numerical Integration by Trapezoidal Simpson's (both 1/3 and 3/8) rule, Double integrals using Trapezoidal and Simpson's rule.

UNIT-IV: INITIAL VALUE PROBLEMS FOR ORDINARY DIFFERENTIAL EQUATIONS 9+6

Single Step methods, Taylors Series, Euler and Modified Euler, Runge-Kutta methods of first and second order Differential equations, Multi Step methods, Milne and Adam's-Bashforth predictor and corrector method.

UNIT-V: BOUNDARY VALUE PROBLEMS FOR ODE AND PDE

Finite difference for the second order Ordinary Differential Equations, Finite Difference solutions for one dimensional heat equations (both Implicit and Explicit), One Dimensional wave equation, Two Dimensional, Laplace and Poisson Equation.