Carrena	٧.	T	l	4	MI
Course 1	1	lum	ner	and	name

BME402 - THERMAL ENGINEERING - I

Credits and Contact Hours

4&60

Course Coordinator's Name

Mr.Srinivasan

Text Books and References

TEXT BOOKS:

- 1. R.K.Rajput, Thermal Engineering, Dhanpat Rai publishers, 2008
- 2. S.Domkundwar-Thermal Engineering-Dhanpat Rai publishers, 2000

REFERENCES:

- 1. P.K.Nag, Basic & Applied Thermodynamics-Tata McGraw Hill, 2002
- 2. Yunus A.Cengel-Thermodynamics-International Edition, 2006.

Study of Steam Turbines

Study of vapour power cycles

Study of rankine power cycles and its application

Understand the concept of refrigeration and its application

3. engg-ebook.blogspot.in > ... > r k rajput > sem 4 > thermal engineering

Course Description

CO₃

CO₄

CO₅

CO6

To integrate the concepts, laws and methodologies from the first course in thermo dynamics into analysis of cyclic processes

To apply the thermodynamic concepts into various thermal application like IC engines, Steam Turbines, Compressors and Refrigeration and Air conditioning systems

	Prerequisites	Co-requisites					
Thermodynamics		Nil					
required, elective, or selected elective (as per Table 5-1)							
Required							
Course Outcomes (COs)							
CO1	Upon completion of this course, the students can able to apply the different gas power						
	cycles						
CO2	Use of them in IC and R&AC applicati	ons.					

S	Student Outcomes (SOs) from Criterion 3 covered by this Course													
	COs/SOs	a	b	c	d	e	f	g	h	i	j	k	1	
	CO1	Н	М	Н			L	L	L	L	L	L	Н	
	CO2	Н	М	Н			L	L	L	L			Н	
	CO3	Н	М	М										
	CO4	Н	М	Н			L	L	L	L				
	CO5	Н	М	Н									Н	
	CO6	Н	М	Н			L	L	L	L			Н	

List of Topics Covered

UNIT I STEAM NOZZLES

Flow of steam through nozzles, Shape of nozzles, Effect of friction, Critical pressure ratio, Super saturated flow

UNIT II STEAM TURBINES

12

12

Working principles, Simple impulse(De laval) turbine, Reaction turbine, velocity and pressure compounded turbines, Height of blades of turbines, multi stage turbine, Radial flow turbines, Governing of steam turbines(Derivations not included)

UNIT III AIR POWER CYCLES

12

Construction & working of 2 stroke and 4 stroke engines, Otto, Diesel and dual cycles-air standard efficiency, Mean effective pressure and power, Brayton with reheat, intercooling and regeneration, Erricson, Stirling, Atkinson cycles.

UNIT IV VAPOUR POWER AND COMBINED CYCLES

12

Rankine, Modified Rankine, Reheat, Regeneration cycles, Binary vapour power cycles, Cogeneration principles & Applications.

UNIT V REFRIGERATION CYCLES

12

Air refrigeration cycles, Vapour compression refrigeration cycle, sub cooling and superheating cycles, vapour absorption cycles.