Course Number and Name

BME501 - Machine design - I

Credits and Contact Hours

4&75

Course Coordinator's Name

Mr.V.Jose Anandh Vino

Text Books and References

TEXT BOOKS :

1. Prabhu T.J. – Fundamentals of Machine Design, 2009.

REFERENCES:

- 1. Bhandari V.B Design of Machine Elements TataMcGraw Hill, 2007.
- 2. Shigley J.E. & Misheka Mechanical Engineering Design2004 McGraw Hill,2007.
- 3. Dobrovolosky, Machine Elements Mir Publications, 1978.
- 4. Pandya & Shah Elements of Machine Design, 2000.
- 5. Design Data, PSG College of Technology, 2007.
- 6. www.allexamresults.net/.../download-pdf-textbook-of-thermal-engineeri...

Course Description

To understand the principles involved in evaluating the shape and dimensions of a component to satisfy functional and strength requirements.

To learn & use standard practices and standard data of design parameters.

	Prerequisites	Co-requisites							
ENGINEERING N	MECHANICS AND DYNAMICS OF	Nil							
MACHINES									
required, elective, or selected elective (as per Table 5-1)									
Required									
Course Outcomes (COs)									
CO1	Students will learn to design components								
CO2	Students will understand how to select a material								
CO3	Students will learn to use the design data book								
CO4	Students will learn to obtain an optimum design procedure								
CO5	Students will understand various concepts in design								
CO6	Students will learn to fabricate/do research using their knowledge attained								
Student Outcomes (SOs) from Criterion 3 covered by this Course									

	COs/SOs	a	b	с	d	e	f	g	h	i	j	k	1	
	CO1	L		Н				М						
	CO2		Н	Н				М						
	CO3							М	Н					
	CO4									Н	Н			
	CO5							М			Н	Η		
	CO6							М					L	
List of Topics Covered														

UNIT I FUNDAMENTALS

Design process – Engineering Materials and Mechanical properties – Eccentric loading – Principal stresses – Design criteria – Calculation of permissible stress – Failure theories – Stress Concentration – Design for variable loading –Soderberg, Goodman and Gerberg relations - Introduction to Fracture Mechanics. Introduction to Optimum Design

UNIT II DESIGN OF SHAFTS

Design of Shafts using fatigue factors – Shafts carrying pulleys gears – overhanging and simply Supported Shafts - Hollow shafts - Design of Axles.

UNIT III DESIGN OF SPRINGS

Design of tension and compression Helical springs – Springs for Buffers – Springs for impact loads – Concentric springs - Springs in series and parallel connection –Design of Leaf springs – Semi elliptical cantilever type.

UNIT IV DESIGN OF RIVETED & WELDED JOINTS

Design of riveted joint for a Boiler – Lozenge joint – Design of eccentrically loaded riveted joints – Design of Welded joints.

UNIT V DESIGN OF BOLTED JOINTS & COUPLINGS

Design of eccentrically loaded bolted joints – Screw fastenings – Gasket joints for cylinders – Design of Rigid couplings, Pin and Bush type flexible couplings, Muff coupling and Clamp coupling.

9+6

9+6

9+6

9+6

9+6