Course Number and Name

BME503 - FLUID POWER SYSTEMS

Credits and Contact Hours

3&45

Course Coordinator's Name

Mr.S.Thirumavalavan

Text Books and References

TEXT BOOKS:

- 1. Andrew Parr, Hydraulics And Pneumatics (HB), Jaico Publishing House, 2005
- 2. R.Srinivasan, Hydraulic and Pneumatic Controls, Second Edition, Vijay Nicole Imprints PVT, 2006.

REFERENCES:

- 1. Anthony Esposito, Fluid Power with applications Prentice Hall, 2006
- 2. Dudleyt A. Pease and John j. Pippenger, Basic Fluid Power, Prentice Hall, 1987.
- 3. Jamco L.Johnson, Introduction to fluid Power, Eswar Press, 2003.
- 4. Majumdar S.R,"Pneumatic systems-Principles and Maintenance", Tata McGraw Hill, 1995.
- 5. www.engineeringstudymaterial.net/ebook/fluid-power-with-applications/

Course Description

CO5

CO6

Μ

Μ

Н

Н

L

L

To know the advantages and applications of Fluid Power Engineering and Power Transmission System. To learn the Applications of Fluid Power System in automation of Machine Tools and others Equipments.

Prerequisites							Co-requisites									
Fluid Mechanics & Machinery							Nil									
	required, elective, or selected elective (as per Table 5-1)															
R	Required															
С	Course Outcomes (COs)															
CO1		Ident	Identify hydraulic and pneumatics components.													
CO2		Ability	Ability to design hydraulic and pneumatic circuits													
CO3		Desig	Design hydraulic circuits													
CO4		Learn	Learn the concepts of pneumatic power and design													
CO5		Learn	Learn to select materials													
CO6		Stude	Students will learn to design													
S	Student Outcomes (SOs) from Criterion 3 covered by this Course															
	COs/SOs	a	b	с	d	e	f	g	h	i	j	k	1			
	CO1	Н	Н	L					М	Μ		Н	н			
	CO2	Н	Н	L					М	М		Н	Н			
	CO3	Н	н						М	М		Н	Н			
	CO4	Н	М	L					М	М		Н	Н			

Μ

Μ

Μ

Μ

Μ

Μ

Μ

Μ

UNIT 1: GENERAL INTRODUCTION AND CONTROL SYSTEM COMPONENTS 9

Introduction to Fluid Power, Advantages, Applications – Fluids – Properties of Fluids - Basic Principle of Fluid Power. Hydraulic pumps, Classification Performance, characteristics, pump selection, - Hydraulic Actuators-Linear, Rotary, Selection, and Characteristics. Control system components-Hydraulic valves – Pressure, Flow, and Direction control - Applications

UNIT II :HYDRAULIC CIRCUITS

Fluid power symbols - Hydraulic circuits - Location of Flow control valves Regenerative, Synchronizing, Sequencing, Intensifier- Accumulator- Types, Applications

UNIT III: HYDRAULIC CIRCUIT DESIGN

Design of Hydraulic circuits - selection of components - Hydraulic circuit for shapers, Surface Grinding machine Vertical milling machine, Forklift ,Hydraulic press, Safety circuits -Automatic reciprocating system, Robot Arm – Hydrostatic Transmission – Power Pack.

UNIT 1V: PNEUMATIC SYSTEMS

Basic concepts and principles of pneumatic circuits, Relative merits and demerits over hydraulic Systems, Pneumatic conditioners – filters, regulators, lubricators, mufflers, Air dryers. Pneumatic actuators, pneumatic circuits, Hydro Pneumatics- Pneumatic logic controls, Electro hydraulic systems – Servo Systems

UNIT V: DESIGN & SELECTION

Design of pneumatic circuits - classic - cascade - step counter - selection criteria for pneumatic components – PLC applications in fluid power control. Installation and Maintenance of Hydraulic and Pneumatic power packs – fault finding – principles of low cost automation, case studies.

9

10

9

8