Course Number and Name

BME601 - MACHINE DESIGN II

Credits and Contact Hours 4&60

Course Coordinator's Name

Dr. A. Buchshumiyan

Text Books and References

TEXT BOOKS :

1. Prabhu T.J. Design of Transmission Elements, 2008.

REFERENCES :

1. Shigley, Mechanical Engineering Design – Tata McGrawHill,2004.

2. Dobrovolosky, Machine Elements – Mir Publications, 1978.

3. Pandya & Shah – Elements of Machine Design, 2000.

4. www.faadooengineers.com/.../26687-Machine-design-by-shigley-ebook-

Course Description

To gain knowledge on the principles and procedure for the design of power Transmission components. To understand the standard procedure available for Design of Transmission sip terms

	Prerequisites	Co-requisites								
MACHINE DESI	GN I	Nil								
required, elective, or selected elective (as per Table 5-1)										
Required										
Course Outcomes (COs)										
CO1	Upon completion of this course, the students can able to successfully design components									
	for a system									
CO2	Design gears									
CO3	Understand bearings and design									
CO4	Understand belt drives and chain drives									
CO5	Understand the principle behind des	ign								
CO6	Learn calculation of speed reduction	, kinematic and ray diagrams								

Student Outcomes (SOs) from Criterion 3 covered by this Course														
51	COs/SOs	a	b	c	d	e	f	g	h	i	i	k	1	
	CO1	H	H	L					M	Μ		Н	Н	
	CO2	Н	Н	L					М	Μ		Н	н	
	CO3	Н	Н						М	М		Н	н	
	CO4	Н	М	L					М	Μ		Н	Н	
	CO5	Μ	Н	L					М	Μ		Μ	М	
	CO6	Μ	Н	L					М	Μ		М	М	
List of Topics Covered														
UNIT I BEARINGS 12														
Design of sliding contact bearings using Somerfield number - Selection of rolling contact bearings for radial and axial load combination and for varying load cycles. UNIT II BELTS AND CHAINS 12														
Design of flat belts and V – belts using manufacturer's data – Design of chain drives using manufacturer's data – PSG.														
UNIT III SPUR AND HELICAL GEARS							12							
Design of spur and helical gears – Russian Design Procedure (PSG Design Data Book / Design of Transmission Elements – T.J. Prabhu)														
UNIT IV BEVEL, WORM GEARS, POWER SCREW 12														
Design of bevel and worm gears – Design of Power screws for machine tool application. Russian Design Procedure (PSG Design Data Book / Design of Transmission Elements – T.J. Prabhu)														
UNIT V MULTI SPEED GEAR BOXES									12					
Design of speed reducers. (Not for Examination)														
Design of Multispeed Gear boxes for machine tools - Ray Diagrams, Kinematic diagram and Number of teeth calculation for gears.														