Course Nu	ımber	and	Name	
D1 5E 600				ī

BME603 - HEAT AND MASS TRANSFER

Credits and Contact Hours

2 & 30

Course Coordinator's Name

Mr.Ravi

Text Books and References

TEXT BOOKS:

1. Sachdeva.R.C-Fundamentals of Heat&Mass Transfer-NewAgeInternational(P)Ltd, 2003

REFERENCES:

- 1. OzisikN.M-heat transfer-McGraw hill Book Company, 1985
- 2. Holman.J.P-heat transfer McGraw hill Book Company, 2002
- 3. Dr.D.S.Kumar, Heat and Mass Transfer, S.K.Kataria & sons, 2003
- 4. P.K.Nag, Heat transfer, McGraw Hill Book Company, 2002.
- 5. bookboon.com/en/momentum-heat-and-mass-transfer-ebook

1.

Course Description

To understand the mechanisms of heat transfer under steady and transient conditions.

To understand the concepts of heat transfer through extended surfaces.

To learn the thermal analysis and sizing of heat exchangers and to understand the basic concepts of mass transfer. (Use of standard HMT data book permitted)

Prerequisites							Co-requisites							
Thermal Engineering-II							Nil							
	required, elective, or selected elective (as per Table 5-1)													
Requi	Required													
Course Outcomes (COs)														
CO1		Learn	Learn steady state state of systems											
CO2		Learn	Learn unsteady state of systems											
CO3		Unde	Understand the principles of convection											
CO4		Unde	Understand the principles of radiation											
CO5		Learn	Learn the design concepts in mass transfer											
CO6		Learn evaporation process in atmosphere												
Stude	Student Outcomes (SOs) from Criterion 3 covered by this Course													
CC	Os/SOs	a	b	С	d	e	f	g	h	i	j	k	1	
(CO1	Н	М					М			М			1

CO2	Н				L	М			
CO3	Н				L	М		L	
CO4							L		
CO5				М					
CO6			М					L	

List of Topics Covered

UNIT I STEADY STATE HEAT CONDUCTION

12

Fourier law of conduction, general equation in Cartesian, cylindrical and spherical co-ordinates, One dimensional steady state conduction across plane wall-Composite wall-composite cylinder-composite sphere with convection boundaries, Overall heat transfer co-efficients, critical thickness of insulation, conduction with generation, conduction and convection systems-fins with direct boundary conditions(Derivations not included)

UNIT II UNSTEADY STATE HEAT CONDUCTION

12

12

Unsteady state conduction-Lumped capacity systems, semi-infinite solids, infinite solids and multi dimensional systems, Numerical solution of 2-dimensional steady and unsteady condition

UNIT III CONVECTION 12

Principles and governing equations, Natural convection from vertical, inclined and horizontal surface, Forced convection-Heat transfer from a flat plate, flow through pipes, condensation and boiling processes-Heat exchangers-Type of heat exchangers-Overall heat transfer co-efficient, LMTD & NTU methods, Fouling factor

UNIT IV RADIATION 12

Black body concept, Grey body, Radiation shape factor, relation between shape factors, radiation heat transfer between two surfaces, Radiation shields, Gas radiation, Solar radiation

UNIT V MASS TRANSFER

Fick's law of diffusion, Stefan's law, Mass transfer co-efficient, Non-dimensional number used in mass transfer, evaporation process in the atmosphere.